Home > Research > Publications & Outputs > An improved locator identifier split architectu...

Electronic data

  • 2017musabphd

    Final published version, 5.99 MB, PDF document

    Available under license: CC BY-ND: Creative Commons Attribution-NoDerivatives 4.0 International License

Text available via DOI:

View graph of relations

An improved locator identifier split architecture (ILISA) to enhance mobility

Research output: ThesisDoctoral Thesis

Published
Publication date2017
Number of pages224
QualificationPhD
Awarding Institution
Supervisors/Advisors
Thesis sponsors
  • Petroleum Technology Development Fund
Award date25/10/2017
Publisher
  • Lancaster University
<mark>Original language</mark>English

Abstract

The increased use of mobile devices has prompted the need for efficient mobility management protocols to ensure continuity of communication sessions as users switch connection between available wireless access networks in an area. Locator/Identifier (LOC/ID) split architectures are designed to, among other functions, enable the mobility of nodes on the Internet. The protocols based on these architectures enable mobility by ensuring that the identifier (IP address) used for creating a communication session is maintained throughout the lifetime of the session and only the location of a mobile node (MN) is updated as the device moves.
While the LOC/ID protocols ensure session continuity during handover, they experience packet loss and long service disruption times as the MN moves from one access network to another. The mobility event causes degradation of throughput, poor network utilisation, and affects the stability of some applications, such as video players. This poor performance was confirmed from the experiments we conducted on a laboratory testbed running Locator Identifier Separation Protocol MN (LISP-MN) and Mobile IPv6 (MIPv6). The MIPv6, as the standardised IETF mobility protocol, was used to benchmark the performance of LISP-MN. The poor performance recorded is owed to the design of the LISP-MN’s architecture, with no specific way of handling packets that arrive during handover events.
Our main aim in this thesis is to introduce an Improved Locator/Identifier Split Architecture (ILISA) designed to enhance the mobility of nodes running a LOC/ID protocol by mitigating packet loss and reducing service disruption in handovers. A new network node, Loc-server, is central to the new architecture with the task of buffering incoming packets during handover and forwarding the packets to the MN on the completion of the node’s movement process. We implemented ILISA with LISP-MN on a laboratory testbed to evaluate its performance in different mobility scenarios. Our experimental results show a significant improvement in the mobility performance of MNs as reflected by the different network parameters investigated.