Home > Research > Publications & Outputs > Sacrificial crystal templating of hyaluronic ac...

Electronic data

  • EPJ-thomas-hardy-schmidt-final-accepted

    Rights statement: This is the author’s version of a work that was accepted for publication in European Polymer Journal. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in European Polymer Journal, 87, 2017 DOI: 10.1016/j.europolymj.2016.10.022

    Accepted author manuscript, 1 MB, PDF-document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

  • EPJ-thomas-hardy-schmidt-supplementary-information

    Rights statement: This is the author’s version of a work that was accepted for publication in European Polymer Journal. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in European Polymer Journal, ??, ?, 2016 DOI: 10.1016/j.europolymj.2016.10.022

    Accepted author manuscript, 401 KB, PDF-document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

Sacrificial crystal templating of hyaluronic acid-based hydrogels

Research output: Contribution to journalJournal article

Published
Close
<mark>Journal publication date</mark>02/2017
<mark>Journal</mark>European Polymer Journal
Volume87
Number of pages10
Pages (from-to)487-496
StatePublished
Early online date14/10/16
Original languageEnglish

Abstract

Natural tissues have intricate structures organized in a hierarchical fashion over multiple length scales (Å to cm). These tissues commonly incorporate pores as a key feature that may regulate cell behavior. To enable the development of tissues scaffolds with biomimetic pore structures, it is important to investigate methods to impart pores to biomaterials, such as the use of novel sacrificial porogens. Here we report the use of sacrificial crystals to impart pores to biopolymer hydrogels (based on a methacrylated hyaluronic acid derivative) with macroscopic crystal templated pores embedded within them. The pore structure was investigated using microscopy (cryoSEM and confocal), and the specific sacrificial porogen used was found not only to impact the pore structure, but also swelling and mechanical properties. Such templated hydrogels have prospects for application as instructive tissue scaffolds (where the pore structure controls cell alignment, migration, etc.).

Bibliographic note

This is the author’s version of a work that was accepted for publication in European Polymer Journal. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in European Polymer Journal, 87, 2017 DOI: 10.1016/j.europolymj.2016.10.022