Home > Research > Publications & Outputs > The ATLAS semiconductor tracker end-cap module.
View graph of relations

The ATLAS semiconductor tracker end-cap module.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
<mark>Journal publication date</mark>06/2007
<mark>Journal</mark>Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Issue number3
Volume575
Number of pages37
Pages (from-to)353-389
Publication StatusPublished
<mark>Original language</mark>English

Abstract

The challenges for the tracking detector systems at the LHC are unprecedented in terms of the number of channels, the required read-out speed and the expected radiation levels. The ATLAS Semiconductor Tracker (SCT) end-caps have a total of about 3 million electronics channels each reading out every 25 ns into its own on-chip buffer. The highest anticipated dose after 10 years operation is in units of 1 MeV neutron equivalent (assuming the damage factors scale with the non-ionising energy loss). The forward tracker has 1976 double-sided modules, mostly of area , each having 2×768 strips read out by six ASICs per side. The requirement to achieve an average perpendicular radiation length of 1.5% X0, while coping with up to 7 W dissipation per module (after irradiation), leads to stringent constraints on the thermal design. The additional requirement of 1500e- equivalent noise charge (ENC) rising to only 1800e- ENC after irradiation, provides stringent design constraints on both the high-density Cu/Polyimide flex read-out circuit and the ABCD3TA read-out ASICs. Finally, the accuracy of module assembly must not compromise the resolution perpendicular to the strip directions or radial resolution coming from the 40 mrad front-back stereo angle. A total of 2210 modules were built to the tight tolerances and specifications required for the SCT. This was 234 more than the 1976 required and represents a yield of 93%. The component flow was at times tight, but the module production rate of 40–50 per week was maintained despite this. The distributed production was not found to be a major logistical problem and it allowed additional flexibility to take advantage of where the effort was available, including any spare capacity, for building the end-cap modules. The collaboration that produced the ATLAS SCT end-cap modules kept in close contact at all times so that the effects of shortages or stoppages at different sites could be rapidly resolved.