Home > Research > Publications & Outputs > Structure-property relationships in metal-organ...

Associated organisational unit

Electronic data

  • CPM_7_Submitted_version_with_changes_to_affiliation_

    Rights statement: This is the author’s version of a work that was accepted for publication in Colloids and Surfaces A: Physicochemical and Engineering Aspects. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Colloids and Surfaces A: Physicochemical and Engineering Aspects, 496, 2016 DOI: 10.1016/j.colsurfa.2015.11.061

    Accepted author manuscript, 578 KB, PDF document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

Structure-property relationships in metal-organic frameworks for hydrogen storage

Research output: Contribution to Journal/MagazineJournal articlepeer-review

E-pub ahead of print
Close
<mark>Journal publication date</mark>27/11/2015
<mark>Journal</mark>Colloids and Surfaces A: Physicochemical and Engineering Aspects
Volume496
Number of pages9
Pages (from-to)77-85
Publication StatusE-pub ahead of print
Early online date27/11/15
<mark>Original language</mark>English

Abstract

Experimental hydrogen isotherms on several metal-organic frameworks (IRMOF-1, IRMOF-3, IRMOF-9, ZIF-7, ZIF-8, ZIF-9, ZIF-11, ZIF-12, ZIF-CoNIm, MIL-101 (Cr), NH2-MIL-101 (Cr), NH2-MIL-101 (Al), UiO-66, UiO-67 and HKUST-1) synthesized in-house and measured at 77 K and pressures up to 18 MPa are presented, along with N2 adsorption characterization. The experimental isotherms together with literature high pressure hydrogen data were analysed in order to search for relationships between structural properties of the materials and their hydrogen uptakes. The total hydrogen capacity of the materials was calculated from the excess adsorption assuming a constant density for the adsorbed hydrogen. The surface area, pore volumes and pore sizes of the materials were related to their maximum hydrogen excess and total hydrogen capacities. Results also show that ZIF-7 and ZIF-9 (SOD topology) have unusual hydrogen isotherm shapes at relatively low pressures, which is indicative of “breathing”, a phase transition in which the pore space increases due to adsorption. This work presents novel and more useful correlations using the modelled total hydrogen capacities of several MOFs. These total hydrogen capacities are more practically relevant for energy storage applications than the measured excess hydrogen capacities. Thus, these structural correlations will be advantageous for the prediction of the properties a MOF will need in order to meet the US Department of Energy targets for the mass and volume of on-board storage systems. Such design tools will allow hydrogen to be used as an energy vector for sustainable mobile applications such as transport, or for providing supplementary power to the grid in times of high demand.

Bibliographic note

This is the author’s version of a work that was accepted for publication in Colloids and Surfaces A: Physicochemical and Engineering Aspects. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Colloids and Surfaces A: Physicochemical and Engineering Aspects, 496, 2016 DOI: 10.1016/j.colsurfa.2015.11.061