Home > Research > Publications & Outputs > Stable isotope analysis of the origins of zoopl...
View graph of relations

Stable isotope analysis of the origins of zooplankton carbon in lakes of differing trophic state.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
Close
<mark>Journal publication date</mark>05/2000
<mark>Journal</mark>Oecologia
Issue number2
Volume123
Number of pages9
Pages (from-to)232-240
Publication StatusPublished
<mark>Original language</mark>English

Abstract

Carbon stable isotope analysis was carried out on zooplankton from 24 United Kingdom lakes to examine the hypothesis that zooplankton dependence on allochthonous sources of organic carbon declines with increasing lake trophy. Stable isotope analysis was also carried out on particulate and dissolved organic matter (POM and DOM) and, in 11 of the lakes, of phytoplankton isolates. In 21 of the 24 lakes, the zooplankton were depleted in 13C relative to bulk POM, consistent with previous reports. δ13C for POM showed relatively little variation between lakes compared to high variation in values for DOM and phytoplankton. δ13C values for phytoplankton and POM converged with increasing lake trophy, consistent with the expected greater contribution of autochthonous production to the total organic matter pool in eutrophic lakes. The difference between δ13C for zooplankton and that for POM was also greatest in oligotrophic lakes and reduced in mesotrophic lakes, in accordance with the hypothesis that increasing lake trophic state leads to greater dependence of zooplankton on phytoplankton production. However, the difference increased again in hypertrophic lakes, where higher δ13C values for POM may have been due to greater inputs of 13C-enriched organic matter from the littoral zone. The very wide variation in phytoplankton δ13C between lakes of all trophic categories made it difficult to detect robust patterns in the variation in δ13C for zooplankton.