Home > Research > Publications & Outputs > Effect of an in-situ thermal annealing on the s...

Associated organisational unit

Electronic data

  • Fernandez-Delgado accepted

    Rights statement: This is the author’s version of a work that was accepted for publication in Applied Surface Science. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Applied Surface Science, 395, 2017 DOI: 10.1016/j.apsusc.2016.04.131

    Accepted author manuscript, 1.86 MB, PDF document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

Effect of an in-situ thermal annealing on the structural properties of self-assembled GaSb/GaAs quantum dots

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
Close
<mark>Journal publication date</mark>15/02/2017
<mark>Journal</mark>Applied Surface Science
Volume395
Number of pages4
Pages (from-to)136-139
Publication StatusPublished
Early online date22/04/16
<mark>Original language</mark>English

Abstract

In this work, the effect of the application of a thermal annealing on the structural properties of GaSb/GaAs quantum dots (QDs)1 is analyzed by aberration corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM)2 and electron energy loss spectroscopy (EELS)3. Our results show that the GaSb/GaAs QDs are more elongated after the annealing, and that the interfaces are less abrupt due to the Sb diffusion. We have also found a strong reduction in the misfit dislocation density with the annealing. The analysis by EELS of a threading dislocation has shown that the dislocation core is rich in Sb. In addition, the region of the GaAs substrate delimited by the threading dislocation is shown to be Sb-rich as well. An enhanced diffusion of Sb due to a mechanism assisted by the dislocation movement is discussed.

Bibliographic note

This is the author’s version of a work that was accepted for publication in Applied Surface Science. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Applied Surface Science, 395, 2017 DOI: 10.1016/j.apsusc.2016.04.131