Home > Research > Publications & Outputs > Volcano-tectonic interactions as triggers of vo...

Electronic data

  • AG_LW_SL_Reviewed_Manuscript

    Rights statement: This is the author’s version of a work that was accepted for publication in Proceedings of the Geologists' Association. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Proceedings of the Geologists' Association, 126, 6, 2015 DOI: 10.1016/j.pgeola.2015.10.002

    Accepted author manuscript, 565 KB, PDF document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

Volcano-tectonic interactions as triggers of volcanic eruptions

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
<mark>Journal publication date</mark>12/2015
<mark>Journal</mark>Proceedings of the Geologists' Association
Issue number6
Volume126
Number of pages8
Pages (from-to)675-682
Publication StatusPublished
Early online date29/11/15
<mark>Original language</mark>English

Abstract

Surface displacements and edifice deformations at active volcanoes can occur when magma reservoirs begin to inflate as new magma enters them. Volcanoes are also subjected to a variety of external lithospheric stresses that are thought to be responsible for triggering volcanic unrest or modifying ongoing activity. However, despite many observations, it is uncertain whether these phenomena can actually interfere with magma chamber dynamics since it is not clear why some volcanoes are more subjected to these interactions than others. In order to determine whether external stresses interfere with volcanic activity, a viscoelastic 3D Finite Element Mogi-based model of Kīlauea volcano's magma chamber was implemented. First, the model was used to replicate an inflation cycle without external stresses. Its results were then compared with the ones obtained if the same model was subjected to tidal stress modulation and a strong (Mw = 7.7) tectonic earthquake. The model showed that tidally-induced pressurization is not sufficiently large to modify the pressure in a 5 km deep volcanic magma chamber, but it suggested how the magma chamber pressure build-up rate can be influenced by tidal pressurization and thus why some volcanoes seem to experience tidal interferences more than others. Furthermore, the model's results suggested why magma chambers are about the same size as calderas both on the Earth and on other Solar System silicate planets. System. Finally, it was used to propose an explanation of why a short-lived eruption at Kīlauea volcano, Hawai’i, began 30 min after the 1975 magnitude 7.7 (Mw) Kalapana earthquake.

Bibliographic note

This is the author’s version of a work that was accepted for publication in Proceedings of the Geologists' Association. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Proceedings of the Geologists' Association, 126, 6, 2015 DOI: 10.1016/j.pgeola.2015.10.002