Home > Research > Publications & Outputs > A logarithmic estimate for harmonic sums and th...

Links

Text available via DOI:

View graph of relations

A logarithmic estimate for harmonic sums and the digamma function, with an application to the Dirichlet divisor problem

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

A logarithmic estimate for harmonic sums and the digamma function, with an application to the Dirichlet divisor problem. / Jameson, G. J. O.
In: Journal of Inequalities and Applications, Vol. 2019, No. 1, 151, 27.05.2019.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

Jameson GJO. A logarithmic estimate for harmonic sums and the digamma function, with an application to the Dirichlet divisor problem. Journal of Inequalities and Applications. 2019 May 27;2019(1):151. doi: 10.1186/s13660-019-2104-9

Author

Bibtex

@article{a96b62b854a5455e95495de17b9f8509,
title = "A logarithmic estimate for harmonic sums and the digamma function, with an application to the Dirichlet divisor problem",
abstract = "Let Hn=∑r=1n1/r$H_{n} = \sum_{r=1}^{n} 1/r$and Hn(x)=∑r=1n1/(r+x)$H_{n}(x) = \sum_{r=1}^{n} 1/(r+x)$. Let ψ(x)$\psi(x)$denote the digamma function. It is shown that Hn(x)+ψ(x+1)$H_{n}(x) + \psi(x+1)$is approximated by 12logf(n+x)$\frac{1}{2}\log f(n+x)$, where f(x)=x2+x+13$f(x) = x^{2} + x + \frac{1}{3}$, with error term of order (n+x)−5$(n+x)^{-5}$. The cases x=0$x = 0$and n=0$n = 0$equate to estimates for Hn−γ$H_{n} - \gamma $and ψ(x+1)$\psi(x+1)$itself. The result is applied to determine exact bounds for a remainder term occurring in the Dirichlet divisor problem.",
author = "Jameson, {G. J. O.}",
year = "2019",
month = may,
day = "27",
doi = "10.1186/s13660-019-2104-9",
language = "English",
volume = "2019",
journal = "Journal of Inequalities and Applications",
issn = "1029-242X",
publisher = "Springer Open",
number = "1",

}

RIS

TY - JOUR

T1 - A logarithmic estimate for harmonic sums and the digamma function, with an application to the Dirichlet divisor problem

AU - Jameson, G. J. O.

PY - 2019/5/27

Y1 - 2019/5/27

N2 - Let Hn=∑r=1n1/r$H_{n} = \sum_{r=1}^{n} 1/r$and Hn(x)=∑r=1n1/(r+x)$H_{n}(x) = \sum_{r=1}^{n} 1/(r+x)$. Let ψ(x)$\psi(x)$denote the digamma function. It is shown that Hn(x)+ψ(x+1)$H_{n}(x) + \psi(x+1)$is approximated by 12logf(n+x)$\frac{1}{2}\log f(n+x)$, where f(x)=x2+x+13$f(x) = x^{2} + x + \frac{1}{3}$, with error term of order (n+x)−5$(n+x)^{-5}$. The cases x=0$x = 0$and n=0$n = 0$equate to estimates for Hn−γ$H_{n} - \gamma $and ψ(x+1)$\psi(x+1)$itself. The result is applied to determine exact bounds for a remainder term occurring in the Dirichlet divisor problem.

AB - Let Hn=∑r=1n1/r$H_{n} = \sum_{r=1}^{n} 1/r$and Hn(x)=∑r=1n1/(r+x)$H_{n}(x) = \sum_{r=1}^{n} 1/(r+x)$. Let ψ(x)$\psi(x)$denote the digamma function. It is shown that Hn(x)+ψ(x+1)$H_{n}(x) + \psi(x+1)$is approximated by 12logf(n+x)$\frac{1}{2}\log f(n+x)$, where f(x)=x2+x+13$f(x) = x^{2} + x + \frac{1}{3}$, with error term of order (n+x)−5$(n+x)^{-5}$. The cases x=0$x = 0$and n=0$n = 0$equate to estimates for Hn−γ$H_{n} - \gamma $and ψ(x+1)$\psi(x+1)$itself. The result is applied to determine exact bounds for a remainder term occurring in the Dirichlet divisor problem.

U2 - 10.1186/s13660-019-2104-9

DO - 10.1186/s13660-019-2104-9

M3 - Journal article

VL - 2019

JO - Journal of Inequalities and Applications

JF - Journal of Inequalities and Applications

SN - 1029-242X

IS - 1

M1 - 151

ER -