Home > Research > Publications & Outputs > A Millimeter-Wave Klystron Upconverter With a H...

Electronic data

  • Millimeter_wave_klystron_upconverterv_for_submission

    Rights statement: ©2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

    Accepted author manuscript, 1.07 MB, PDF document

    Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License

Links

Text available via DOI:

View graph of relations

A Millimeter-Wave Klystron Upconverter With a Higher Order Mode Output Cavity

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
<mark>Journal publication date</mark>09/2017
<mark>Journal</mark>IEEE Transactions on Electron Devices
Issue number9
Volume64
Number of pages6
Pages (from-to)3857-3862
Publication StatusPublished
Early online date25/07/17
<mark>Original language</mark>English

Abstract

Manufacturing of klystrons in the millimeter-wave frequency range is challenging due to the small size of the cavities and the ratio of the maximum gap voltage to the beam energy. The small dimensions also make difficult to produce devices with the output power required by a number of applications at millimeter wave, such as communications and spectroscopy. Operating with a higher order mode can be a potential solution, as a larger transverse size structure can be used. Unfortunately, high-order mode cavities have a lower impedance than in fundamental mode. In this paper is proposed a novel solution to overcome the reduced impedance by utilizing an upconverter, where all cavities except the output cavity are designed to work in high-order mode. To demonstrate the effectiveness of the approach, two klystron upconverters were designed. One has six cavities aiming to achieve a maximum output power of $~$90 W at 105 GHz. The second klystron upconverter was a simpler three-cavity structure designed for quick prototype. Millimeter-wave measurements of the three-cavity klystron upconverter are presented.

Bibliographic note

©2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.