Home > Research > Publications & Outputs > A role for shoot protein in shoot-root dry matt...
View graph of relations

A role for shoot protein in shoot-root dry matter allocation in higher plants.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

A role for shoot protein in shoot-root dry matter allocation in higher plants. / Andrews, M.; Raven, J. A.; Lea, P. J. et al.
In: Annals of Botany, Vol. 97, No. 1, 2006, p. 3-10.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Andrews, M, Raven, JA, Lea, PJ & Sprent, JI 2006, 'A role for shoot protein in shoot-root dry matter allocation in higher plants.', Annals of Botany, vol. 97, no. 1, pp. 3-10. https://doi.org/10.1093/aob/mcj009

APA

Andrews, M., Raven, J. A., Lea, P. J., & Sprent, J. I. (2006). A role for shoot protein in shoot-root dry matter allocation in higher plants. Annals of Botany, 97(1), 3-10. https://doi.org/10.1093/aob/mcj009

Vancouver

Andrews M, Raven JA, Lea PJ, Sprent JI. A role for shoot protein in shoot-root dry matter allocation in higher plants. Annals of Botany. 2006;97(1):3-10. doi: 10.1093/aob/mcj009

Author

Andrews, M. ; Raven, J. A. ; Lea, P. J. et al. / A role for shoot protein in shoot-root dry matter allocation in higher plants. In: Annals of Botany. 2006 ; Vol. 97, No. 1. pp. 3-10.

Bibtex

@article{259b1fbf19ea412cab0d82bf97c1a4fb,
title = "A role for shoot protein in shoot-root dry matter allocation in higher plants.",
abstract = "Background and Aims It is stated in many recent publications that nitrate () acts as a signal to regulate dry matter partitioning between the shoot and root of higher plants. Here we challenge this hypothesis and present evidence for the viewpoint that and other environmental effects on the shoot : root dry weight ratio (S:R) of higher plants are often related mechanistically to changes in shoot protein concentration. • Methods The literature on environmental effects on S:R is reviewed, focusing on relationships between S:R, growth and leaf and protein concentrations. A series of experiments carried out to test the proposal that S:R is dependent on shoot protein concentration is highlighted and new data are presented for tobacco (Nicotiana tabacum). • Key Results/Evidence Results from the literature and new data for tobacco show that S:R and leaf concentration are not significantly correlated over a range of environmental conditions. A mechanism involving the relative availability of C and N substrates for growth in shoots can explain how shoot protein concentration can influence shoot growth and hence root growth and S:R. Generally, results in the literature are compatible with the hypothesis that macronutrients, water, irradiance and CO2 affect S:R through changes in shoot protein concentration. In detailed studies on several species, including tobacco, a linear regression model incorporating leaf soluble protein concentration and plant dry weight could explain the greater proportion of the variation in S:R within and between treatments over a wide range of conditions. • Conclusions It is concluded that if can influence the S:R of higher plants, it does so only over a narrow range of conditions. Evidence is strong that environmental effects on S:R are often related mechanistically to their effects on shoot protein concentration.",
keywords = "Dry matter partitioning, nitrate signalling, nitrogen, protein, Nicotiana tabacum, tobacco, shoot, root ratio",
author = "M. Andrews and Raven, {J. A.} and Lea, {P. J.} and Sprent, {J. I.}",
year = "2006",
doi = "10.1093/aob/mcj009",
language = "English",
volume = "97",
pages = "3--10",
journal = "Annals of Botany",
issn = "1095-8290",
publisher = "OXFORD UNIV PRESS",
number = "1",

}

RIS

TY - JOUR

T1 - A role for shoot protein in shoot-root dry matter allocation in higher plants.

AU - Andrews, M.

AU - Raven, J. A.

AU - Lea, P. J.

AU - Sprent, J. I.

PY - 2006

Y1 - 2006

N2 - Background and Aims It is stated in many recent publications that nitrate () acts as a signal to regulate dry matter partitioning between the shoot and root of higher plants. Here we challenge this hypothesis and present evidence for the viewpoint that and other environmental effects on the shoot : root dry weight ratio (S:R) of higher plants are often related mechanistically to changes in shoot protein concentration. • Methods The literature on environmental effects on S:R is reviewed, focusing on relationships between S:R, growth and leaf and protein concentrations. A series of experiments carried out to test the proposal that S:R is dependent on shoot protein concentration is highlighted and new data are presented for tobacco (Nicotiana tabacum). • Key Results/Evidence Results from the literature and new data for tobacco show that S:R and leaf concentration are not significantly correlated over a range of environmental conditions. A mechanism involving the relative availability of C and N substrates for growth in shoots can explain how shoot protein concentration can influence shoot growth and hence root growth and S:R. Generally, results in the literature are compatible with the hypothesis that macronutrients, water, irradiance and CO2 affect S:R through changes in shoot protein concentration. In detailed studies on several species, including tobacco, a linear regression model incorporating leaf soluble protein concentration and plant dry weight could explain the greater proportion of the variation in S:R within and between treatments over a wide range of conditions. • Conclusions It is concluded that if can influence the S:R of higher plants, it does so only over a narrow range of conditions. Evidence is strong that environmental effects on S:R are often related mechanistically to their effects on shoot protein concentration.

AB - Background and Aims It is stated in many recent publications that nitrate () acts as a signal to regulate dry matter partitioning between the shoot and root of higher plants. Here we challenge this hypothesis and present evidence for the viewpoint that and other environmental effects on the shoot : root dry weight ratio (S:R) of higher plants are often related mechanistically to changes in shoot protein concentration. • Methods The literature on environmental effects on S:R is reviewed, focusing on relationships between S:R, growth and leaf and protein concentrations. A series of experiments carried out to test the proposal that S:R is dependent on shoot protein concentration is highlighted and new data are presented for tobacco (Nicotiana tabacum). • Key Results/Evidence Results from the literature and new data for tobacco show that S:R and leaf concentration are not significantly correlated over a range of environmental conditions. A mechanism involving the relative availability of C and N substrates for growth in shoots can explain how shoot protein concentration can influence shoot growth and hence root growth and S:R. Generally, results in the literature are compatible with the hypothesis that macronutrients, water, irradiance and CO2 affect S:R through changes in shoot protein concentration. In detailed studies on several species, including tobacco, a linear regression model incorporating leaf soluble protein concentration and plant dry weight could explain the greater proportion of the variation in S:R within and between treatments over a wide range of conditions. • Conclusions It is concluded that if can influence the S:R of higher plants, it does so only over a narrow range of conditions. Evidence is strong that environmental effects on S:R are often related mechanistically to their effects on shoot protein concentration.

KW - Dry matter partitioning

KW - nitrate signalling

KW - nitrogen

KW - protein

KW - Nicotiana tabacum

KW - tobacco

KW - shoot

KW - root ratio

U2 - 10.1093/aob/mcj009

DO - 10.1093/aob/mcj009

M3 - Journal article

VL - 97

SP - 3

EP - 10

JO - Annals of Botany

JF - Annals of Botany

SN - 1095-8290

IS - 1

ER -