Non-amenability of ${\mathcal B}(E)$ has been surprisingly difficult to prove for the classical Banach spaces, but is now known for $E= \ell_p$ and $E=L_p$ for all $1\leq p<\infty$. However, the arguments are rather indirect: the proof for $L_1$ goes via non-amenability of $\ell^\infty({\mathcal K}(\ell_1))$ and a transference principle developed by Daws and Runde (Studia Math., 2010).
In this note, we provide a short proof that ${\mathcal B}(L_1)$ and some of its subalgebras are non-amenable, which completely bypasses all of this machinery. Our approach is based on classical properties of the ideal of representable operators on $L_1$, and shows that ${\mathcal B}(L_1)$ is not even approximately amenable.
https://www.cambridge.org/core/journals/proceedings-of-the-royal-society-of-edinburgh-section-a-mathematics/article/short-proof-that-l1-is-not-amenable/5EB9501F273D24ABD38EDEAB8B9433AD The final, definitive version of this article has been published in the Journal, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, ?? (?), pp ?-? 2020, © 2020 Cambridge University Press.