12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > A solar storm observed from the Sun to Venus us...
View graph of relations

« Back

A solar storm observed from the Sun to Venus using the STEREO, Venus Express, and MESSENGER spacecraft

Research output: Contribution to journalJournal article

Published

  • A. P. Rouillard
  • J. A. Davies
  • R. J. Forsyth
  • N. P. Savani
  • N. R. Sheeley
  • A. Thernisien
  • T. -L. Zhang
  • R. A. Howard
  • B. Anderson
  • C. M. Carr
  • S. Tsang
  • M. Lockwood
  • C. J. Davis
  • R. A. Harrison
  • D. Bewsher
  • M. Fraenz
  • S. R. Crothers
  • C. J. Eyles
  • D. S. Brown
  • I. Whittaker
  • A. J. Coates
  • G. H. Jones
  • M. Grande
  • R. A. Frahm
  • J. D. Winningham
???articleNumber???A07106
Journal publication date21/07/2009
JournalJournal of Geophysical Research
Journal numberA7
Volume114
Number of pages16
Original languageEnglish

Abstract

The suite of SECCHI optical imaging instruments on the STEREO-A spacecraft is used to track a solar storm, consisting of several coronal mass ejections (CMEs) and other coronal loops, as it propagates from the Sun into the heliosphere during May 2007. The 3-D propagation path of the largest interplanetary CME (ICME) is determined from the observations made by the SECCHI Heliospheric Imager (HI) on STEREO-A (HI-1/2A). Two parts of the CME are tracked through the SECCHI images, a bright loop and a V-shaped feature located at the rear of the event. We show that these two structures could be the result of line-of-sight integration of the light scattered by electrons located on a single flux rope. In addition to being imaged by HI, the CME is observed simultaneously by the plasma and magnetic field experiments on the Venus Express and MESSENGER spacecraft. The imaged loop and V-shaped structure bound, as expected, the flux rope observed in situ. The SECCHI images reveal that the leading loop-like structure propagated faster than the V-shaped structure, and a decrease in in situ CME speed occurred during the passage of the flux rope. We interpret this as the result of the continuous radial expansion of the flux rope as it progressed outward through the interplanetary medium. An expansion speed in the radial direction of similar to 30 km s(-1) is obtained directly from the SECCHI-HI images and is in agreement with the difference in speed of the two structures observed in situ. This paper shows that the flux rope location can be determined from white light images, which could have important space weather applications.

Bibliographic note

Copyright 2009 by the American Geophysical Union