12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > A verified model of laser direct metal depositi...
View graph of relations

« Back

A verified model of laser direct metal deposition using an analytical enthalpy balance method

Research output: Contribution in Book/Report/ProceedingsPaper

Published

Publication date2007
Host publicationProceedings of the 26th International Congress on Applications of Lasers and Electro-optics (ICALEO)
PublisherLaser Institute of America
Original languageEnglish

Abstract

Analytical modelling of a quasi-stationary laser melt pool without mass addition can be achieved using relatively simple moving surface heat flux solutions. However, including mass addition from a coaxial powder stream alters the laser flux and energy and mass flow pathways and often leads to the problem being modelled using numerical methods. The model described in this paper combines an analytical beam attenuation model to account for beam powder interaction above the melt pool with series of standard solutions for a moving Gaussian heat source to calculate melt pool size and substrate isotherms. A negative enthalpy method is used to compensate for the mass addition to the melt pool. The model is verified using a variety of methods and can predict powder stream mass and temperature distribution at the substrate and final melt pool shape in three dimensions from the major laser direct metal deposition process variables. The model highlights the role of beam-powder interaction in the process.