12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Air-vegetation transfer of PCDD/PCDFs : an asse...
View graph of relations

« Back

Air-vegetation transfer of PCDD/PCDFs : an assessment of field data and implications for modeling.

Research output: Contribution to journalJournal article

Published

Journal publication date07/2006
JournalEnvironmental Pollution
Journal number1
Volume142
Number of pages8
Pages143-150
Original languageEnglish

Abstract

This study was designed to evaluate soil and air (gas and particle) transfer of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) to vegetation in residential and industrial areas. In a first part, soil-vegetation transfer was assessed. The levels of PCDD/Fs in 120 soil and 120 herbage samples collected from 1996 to 2002 in an industrial area of Montcada (Barcelona, Spain), near a municipal solid waste incinerator (MSWI), were determined. Some additional individual samples were also evaluated. It was concluded that high soil concentrations, which are not at steady state with the air layer above it, show a tendency for PCDD/Fs to escape via volatilization. In a second part of the study, air-vegetation transfer was examined. PCDD/F concentrations from 24 herbage samples were used, while PCDD/F concentrations were also measured in seven high-volume air samples and seven passive air-vapor samples. Scavenging coefficients (m3 air “sampled”/g grass d.m.) ranged from 1.9 to 11.3 m3/g. A good trend with KOA was observed for PCDDs (R = 0.82), while it was lower for PCDFs (R = 0.55). The current results corroborate that PCDD/F concentrations in vegetation are associated with atmospheric deposition. For the highest substituted PCDD/F congeners, the air-particle uptake from plants is the principal pathway. In regions impacted by combustion emission sources, PCDD/F gas–particle partitioning is influenced by a higher concentration of particles in the air. Particles and associated particle-bound PCDD/Fs would sorb to leaf surfaces, and are subject to removal via wash off. However, in areas where emissions to air are not very notable, vapor absorption would be the principal source of vegetation pollution. The results of this investigation can have a potential interest in risk assessment studies and environmental fate models. Soil and air transfer of PCDD/PCDFs to vegetation were evaluated in residential and industrial areas.