Home > Research > Publications & Outputs > Analysis of apatite layers on glass-ceramic par...
View graph of relations

Analysis of apatite layers on glass-ceramic particulate using FTIR and FT-Raman spectroscopy

Research output: Contribution to journalJournal article

Published
Close
<mark>Journal publication date</mark>2000
<mark>Journal</mark>Journal of Biomedical Materials Research Part A
Issue number2
Volume50
Number of pages4
Pages (from-to)97-100
Publication statusPublished
Original languageEnglish

Abstract

A nucleation and crystallization schedule was adapted to produce 40% crystalline Bioglass® ceramic particulates. These particles were placed in a dynamic environment in a simulated physiologic solution (SBF-9) for time periods ranging from 10 min to 7 days. Fourier transform Raman spectroscopy (FT-Raman) and infrared spectroscopy (FTIR) were used to analyze the apatite layer formation on the particulates. FTIR determined that amorphous apatite formation took place within 2 h, with the appearance of crystalline apatite in 14 h. The vibrational frequencies obtained through FT-Raman were equivalent to those obtained using FTIR. These analyses showed that a fully crystallized apatite layer was present on the particulate after 3 days of exposure in SBF solution. These findings are consistent with those associated with amorphous Bioglass® particles. (C) 2000 John Wiley and Sons, Inc. A nucleation and crystallization schedule was adapted to produce 40% crystalline Bioglass ceramic particulates. These particles were placed in a dynamic environment in a simulated physiologic solution (SBF-9) for time periods ranging from 10 min to 7 days. Fourier transform Raman spectroscopy (FT-Raman) and infrared spectroscopy (FTIR) were used to analyze the apatite layer formation on the particulates. FTIR determined that amorphous apatite formation took place within 2 h, with the appearance of crystalline apatite in 14 h. The vibrational frequencies obtained through FT-Raman were equivalent to those obtained using FTIR. These analyses showed that a fully crystallized apatite layer was present on the particulate after 3 days of exposure in SBF solution. These findings are consistent with those associated with amorphous Bioglass particles.