Home > Research > Publications & Outputs > Assessing the potential for multi-functional te...

Associated organisational unit

Electronic data

  • Al-PCM Mat lett

    Rights statement: This is the author’s version of a work that was accepted for publication in Materials Letters. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Materials Letters, 185, 2016 DOI: 10.1016/j.matlet.2016.08.104

    Accepted author manuscript, 708 KB, PDF document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

Assessing the potential for multi-functional textquotedbllefthybridtextquotedblright porous Al-phase change material structures

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
<mark>Journal publication date</mark>15/12/2016
<mark>Journal</mark>Materials Letters
Volume185
Number of pages3
Pages (from-to)339-341
Publication StatusPublished
Early online date22/08/16
<mark>Original language</mark>English

Abstract

This study reports the potential for porous aluminium structures, containing porosity in the region of 50textendash80 to provide enhancement of the rate of energy capture in phase change materials, whilst being capable of providing a basic mechanical function. The energy stored and the time for thermal exchange between warm water (at 65 textdegreeC) and porous aluminium, pure PCM and an Al-PCM hybrid structure was measured. It was observed that the melting of the PCM within the hybrid structure can be greatly accelerated by the continuous, porous aluminium structure. The energy uptake per second was found to follow an approximately linear dependence on the thermal effusivity for the material. This knowledge was used to predict the potential for enhancement of the rate of energy capture, by varying the porosity in the structure, whilst also estimating the detriment to the energy storage density and the mechanical strength. Appreciating this trade off in performance and properties is vital to the design of multi-functional porous structures.

Bibliographic note

This is the author’s version of a work that was accepted for publication in Materials Letters. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Materials Letters, 185, 2016 DOI: 10.1016/j.matlet.2016.08.104