Home > Research > Publications & Outputs > Assessing the significance of wet-canopy evapor...

Text available via DOI:

View graph of relations

Assessing the significance of wet-canopy evaporation from forests during extreme rainfall events for flood mitigation in mountainous regions of the UK

Research output: Contribution to journalJournal article

Forthcoming
<mark>Journal publication date</mark>19/08/2020
<mark>Journal</mark>Hydrological Processes
Publication StatusAccepted/In press
<mark>Original language</mark>English

Abstract

There is increased interest in the potential of tree planting to help mitigate flooding using nature‐based solutions or natural flood management. However, many publications based upon catchment studies conclude that, as flood magnitude increases, benefit from forest cover declines and is insignificant for extreme flood events. These conclusions conflict with estimates of evaporation loss from forest plot observations of gross rainfall, throughfall and stem flow. This study explores data from existing studies to assess the magnitudes of evaporation and attempts to identify the meteorological conditions under which they would be supported. This is achieved using rainfall event data collated from publications and data archives from studies undertaken in temperate environments around the world. The meteorological conditions required to drive the observed evaporation losses are explored theoretically using the Penman‐Monteith equation. The results of this theoretical analysis are compared with the prevailing meteorological conditions during large and extreme rainfall events in mountainous regions of the UK to assess the likely significance of wet canopy evaporation loss. The collated dataset showed that event Ewc losses between approximately 2 and 38% of gross rainfall (1.5 to 39.4 mm d‐1) have been observed during large rainfall events (up to 118 mm d‐1) and that there are few data for extreme events (> 150 mm d‐1). Event data greater than 150 mm (reported separately) included similarly high percentage evaporation losses. Theoretical estimates of wet‐canopy evaporation indicated that, to reproduce the losses towards the high end of these observations, relative humidity and the aerodynamic resistance for vapour transport needed to be lower than approximately 97.5% and 0.5 to 2 s m‐1 respectively. Surface meteorological data during large and extreme rainfall events in the UK suggest that conditions favourable for high wet‐canopy evaporation are not uncommon and indicate that significant evaporation losses during large and extreme events are possible but not for all events and not at all locations. Thus the disparity with the results from catchment studies remains.