Home > Research > Publications & Outputs > Bayesian estimation of agent-based models

Electronic data

  • 1-s2.0-S0165188917300222-main

    Rights statement: This is the author’s version of a work that was accepted for publication in Journal of Economic Dynamics and Control. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Economic Dynamics and Control, 77, 2017 DOI: 10.1016/j.jedc.2017.01.014

    Accepted author manuscript, 1 MB, PDF document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

Bayesian estimation of agent-based models

Research output: Contribution to journalJournal article

Published
Close
<mark>Journal publication date</mark>04/2017
<mark>Journal</mark>Journal of Economic Dynamics and Control
Volume77
Number of pages22
Pages (from-to)26-47
Publication statusPublished
Early online date5/02/17
Original languageEnglish

Abstract

We consider Bayesian inference techniques for Agent-Based (AB) models, as an alternative to simulated minimum distance (SMD). Three computationally heavy steps are involved: (i) simulating the model, (ii) estimating the likelihood and (iii) sampling from the posterior distribution of the parameters. Computational complexity of AB models implies that efficient techniques have to be used with respect to points (ii) and (iii), possibly involving approximations. We first discuss non-parametric (kernel density) estimation of the likelihood, coupled with Markov chain Monte Carlo sampling schemes. We then turn to parametric approximations of the likelihood, which can be derived by observing the distribution of the simulation outcomes around the statistical equilibria, or by assuming a specific form for the distribution of external deviations in the data. Finally, we introduce Approximate Bayesian Computation techniques for likelihood-free estimation. These allow embedding SMD methods in a Bayesian framework, and are particularly suited when robust estimation is needed. These techniques are first tested in a simple price discovery model with one parameter, and then employed to estimate the behavioural macroeconomic model of De Grauwe (2012), with nine unknown parameters.

Bibliographic note

This is the author’s version of a work that was accepted for publication in Journal of Economic Dynamics and Control. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Economic Dynamics and Control, 77, 2017 DOI: 10.1016/j.jedc.2017.01.014