12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Bayesian estimation of flood inundation probabi...
View graph of relations

« Back

Bayesian estimation of flood inundation probabilities as conditioned on event inundation maps.

Research output: Contribution to journalJournal article

Published

Journal publication date29/03/2003
JournalWater Resources Research
Journal number3
Volume39
Pages1073
Original languageEnglish

Abstract

The generalized likelihood uncertainty estimation (GLUE) methodology is applied to the problem of predicting the spatially distributed, time-varying probabilities of inundation of all points on a floodplain. Advantage is taken of the relative independence of different effective conveyance parameters to minimize the simulations required. Probability estimates are based on conditioning predictions of Monte Carlo realizations of a distributed quasi-two-dimensional flood routing model using maps of maximum inundation and aerial photographs of flooding in the area. The methodology allows posterior distributions of conveyance parameters to be estimated and maps of inundation potential probabilities to be drawn up for flood events of different magnitudes. The results suggest that combining information from different magnitude events should be done with care, as the distributions of effective parameter values may vary with event magnitude. The value of accurate topographic information that is consistent with mapped inundation is also highlighted. The methodology can be used to obtain dynamic probabilities of floodplain inundation in real time forecasting.