12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Bayesian estimation of uncertainty in land surf...
View graph of relations

« Back

Bayesian estimation of uncertainty in land surface-atmosphere flux predictions

Research output: Contribution to journalJournal article

Published

Journal publication date1997
JournalJournal of Geophysical Research: Atmospheres
Journal numberD20
Volume102
Number of pages9
Pages23991-23999
Original languageEnglish

Abstract

This study addresses the assessment of uncertainty associated with predictions of land surface-atmosphere fluxes using Bayesian Monte Carlo simulation within the generalized likelihood uncertainty estimation (GLUE) methodology. Even a simple soil vegetation-atmosphere transfer (SVAT) scheme is shown to lead to multiple acceptable parameterizations when calibration data are limited to timescales of typical intensive field campaigns. The GLUE methodology assigns a likelihood weight to each acceptable simulation. As more data become available, these likelihood weights may be updated by using Bayes equation. Application of the GLUE methodology can be shown to reveal deficiencies in model structure and the benefit of additional calibration data. The method is demonstrated with data sets taken from FIFE sites in Kansas, and ABRACOS data from the Amazon. Estimates of uncertainty are propagated for each data set revealing significant predictive uncertainty. The value of additional periods of data is then evaluated through comparing updated uncertainty estimates with previous estimates using the Shannon entropy measure.