Home > Research > Publications & Outputs > Biodiversity consequences of land-use change an...

Electronic data

  • 2016_Solar_etal_BiologicalConservation

    Rights statement: This is the author’s version of a work that was accepted for publication in Biological Conservation. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Biological Conservation, 197, 2016 DOI: 10.1016/j.biocon.2016.03.005

    Accepted author manuscript, 19 MB, PDF document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

Biodiversity consequences of land-use change and forest disturbance in the Amazon: a multi-scale assessment using ant communities

Research output: Contribution to journalJournal article

Published
Close
<mark>Journal publication date</mark>05/2016
<mark>Journal</mark>Biological Conservation
Volume197
Number of pages10
Pages (from-to)98-107
Publication statusPublished
Early online date15/03/16
Original languageEnglish

Abstract

Quantifying and understanding the main drivers of biodiversity responses to human disturbances at multiple scales is key to foster effective conservation plans and management systems. Here we report on a detailed regional assessment of the response of ant communities to land-use change and forest disturbance in the Brazilian Amazon. We aimed to explore the effects of land-use intensification at both site and landscape scales, examining variation in ant species richness and composition, and asking which set of environmental variables best predict observed patterns of diversity. We sampled 192 sites distributed across 18 landscapes (each 50 km2) in Paragominas, eastern Brazilian Amazon, covering ca. 20,000 km2. We sampled from undisturbed primary forest through varyingly disturbed primary forests, secondary forests, pastures and mechanised agriculture, following a gradient of decreasing total aboveground biomass. Irrespective of forest disturbance class, ant species richness was almost twice as high in forests when compared to production areas. In contrast, ant species composition showed continuous variation from primary forest to intensive agriculture, following a gradient of aboveground biomass. Ant species richness at all spatial scales increased with primary forest cover in the surrounding landscapes. We highlight the limited value of species richness as an indicator of changes in habitat quality, reinforcing calls to consider species composition in assessments of forest disturbance. Taken together, our results reveal the unique biodiversity value of undisturbed primary forests, but also show that disturbed primary forests and secondary forests have high conservation value, and thus play an important role in regional conservation planning.

Bibliographic note

This is the author’s version of a work that was accepted for publication in Biological Conservation. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Biological Conservation, 197, 2016 DOI: 10.1016/j.biocon.2016.03.005