Home > Research > Publications & Outputs > Can microbial mineralization be used to estimat...
View graph of relations

Can microbial mineralization be used to estimate microbial availability of organic contaminants in soil?

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Can microbial mineralization be used to estimate microbial availability of organic contaminants in soil? / Semple, Kirk T.; Dew, Nadia M.; Doick, Kieron J. et al.
In: Environmental Pollution, Vol. 140, No. 1, 03.2006, p. 164-172.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

Semple KT, Dew NM, Doick KJ, Rhodes A. Can microbial mineralization be used to estimate microbial availability of organic contaminants in soil? Environmental Pollution. 2006 Mar;140(1):164-172. doi: 10.1016/j.envpol.2005.06.009

Author

Semple, Kirk T. ; Dew, Nadia M. ; Doick, Kieron J. et al. / Can microbial mineralization be used to estimate microbial availability of organic contaminants in soil?. In: Environmental Pollution. 2006 ; Vol. 140, No. 1. pp. 164-172.

Bibtex

@article{a09ad0399d7c480e92484feb35550bae,
title = "Can microbial mineralization be used to estimate microbial availability of organic contaminants in soil?",
abstract = "The aim of this study was to characterize the behaviour of a PAH-degrading bacterium to determine whether mineralization plateaus as a result of substrate removal, a decrease in microbial activity or nutrient availability in sterile soils over time. To investigate this, the mineralization of 14C-phenanthrene was measured until it plateaued; subsequently, additional 14C-phenanthrene, catabolic inocula or nutrients were introduced and mineralization was measured for a further 10 d. Cell numbers were also measured together with 14C-uptake into microbial biomass. Freshly added 14C-phenanthrene was rapidly metabolised by the microorganisms. Neither the addition of a catabolic inoculum nor nutrients affected the extent of 14C-phenanthrene mineralization. Cell numbers remained constant over time, with only a small amount of the 14C-activity incorporated into the microbial biomass. This study indicated that the termination of mineralization was due to the removal of available phenanthrene and not decreasing cellular activity or cell death. The mineralization values also correlated with 14C-phenanthrene extractability using β-cyclodextrin. Mineralization can estimate the microbial availability of 14C-contaminants in soil.",
keywords = "Phenanthrene, Bioavailability, Respirometry, HPCD, Microbial inoculum",
author = "Semple, {Kirk T.} and Dew, {Nadia M.} and Doick, {Kieron J.} and Angela Rhodes",
note = "Semple was the senior and corresponding author of this paper. Dew/Doick/ Rhodes were postgraduate students, supervised by Semple. Numerous studies have assumed that mineralisation of chemicals is a measure of bioavailability and as a comparator for its chemical determination (see Paper 1 above); this paper addressed this assumption. RAE_import_type : Journal article RAE_uoa_type : Earth Systems and Environmental Sciences",
year = "2006",
month = mar,
doi = "10.1016/j.envpol.2005.06.009",
language = "English",
volume = "140",
pages = "164--172",
journal = "Environmental Pollution",
issn = "0269-7491",
publisher = "Elsevier Ltd",
number = "1",

}

RIS

TY - JOUR

T1 - Can microbial mineralization be used to estimate microbial availability of organic contaminants in soil?

AU - Semple, Kirk T.

AU - Dew, Nadia M.

AU - Doick, Kieron J.

AU - Rhodes, Angela

N1 - Semple was the senior and corresponding author of this paper. Dew/Doick/ Rhodes were postgraduate students, supervised by Semple. Numerous studies have assumed that mineralisation of chemicals is a measure of bioavailability and as a comparator for its chemical determination (see Paper 1 above); this paper addressed this assumption. RAE_import_type : Journal article RAE_uoa_type : Earth Systems and Environmental Sciences

PY - 2006/3

Y1 - 2006/3

N2 - The aim of this study was to characterize the behaviour of a PAH-degrading bacterium to determine whether mineralization plateaus as a result of substrate removal, a decrease in microbial activity or nutrient availability in sterile soils over time. To investigate this, the mineralization of 14C-phenanthrene was measured until it plateaued; subsequently, additional 14C-phenanthrene, catabolic inocula or nutrients were introduced and mineralization was measured for a further 10 d. Cell numbers were also measured together with 14C-uptake into microbial biomass. Freshly added 14C-phenanthrene was rapidly metabolised by the microorganisms. Neither the addition of a catabolic inoculum nor nutrients affected the extent of 14C-phenanthrene mineralization. Cell numbers remained constant over time, with only a small amount of the 14C-activity incorporated into the microbial biomass. This study indicated that the termination of mineralization was due to the removal of available phenanthrene and not decreasing cellular activity or cell death. The mineralization values also correlated with 14C-phenanthrene extractability using β-cyclodextrin. Mineralization can estimate the microbial availability of 14C-contaminants in soil.

AB - The aim of this study was to characterize the behaviour of a PAH-degrading bacterium to determine whether mineralization plateaus as a result of substrate removal, a decrease in microbial activity or nutrient availability in sterile soils over time. To investigate this, the mineralization of 14C-phenanthrene was measured until it plateaued; subsequently, additional 14C-phenanthrene, catabolic inocula or nutrients were introduced and mineralization was measured for a further 10 d. Cell numbers were also measured together with 14C-uptake into microbial biomass. Freshly added 14C-phenanthrene was rapidly metabolised by the microorganisms. Neither the addition of a catabolic inoculum nor nutrients affected the extent of 14C-phenanthrene mineralization. Cell numbers remained constant over time, with only a small amount of the 14C-activity incorporated into the microbial biomass. This study indicated that the termination of mineralization was due to the removal of available phenanthrene and not decreasing cellular activity or cell death. The mineralization values also correlated with 14C-phenanthrene extractability using β-cyclodextrin. Mineralization can estimate the microbial availability of 14C-contaminants in soil.

KW - Phenanthrene

KW - Bioavailability

KW - Respirometry

KW - HPCD

KW - Microbial inoculum

U2 - 10.1016/j.envpol.2005.06.009

DO - 10.1016/j.envpol.2005.06.009

M3 - Journal article

VL - 140

SP - 164

EP - 172

JO - Environmental Pollution

JF - Environmental Pollution

SN - 0269-7491

IS - 1

ER -