Home > Research > Publications & Outputs > Characterisation of polymer-coated glass (POGs)...

Links

Text available via DOI:

View graph of relations

Characterisation of polymer-coated glass (POGs) as passive air samplers for persistent organic pollutants.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Characterisation of polymer-coated glass (POGs) as passive air samplers for persistent organic pollutants. / Harner, Tom; Farrar, Nick; Shoeib, Mahiba et al.
In: Environmental Science and Technology, Vol. 37, No. 11, 01.06.2003, p. 2486-2493.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Harner, T, Farrar, N, Shoeib, M, Jones, KC & Gobas, FAPC 2003, 'Characterisation of polymer-coated glass (POGs) as passive air samplers for persistent organic pollutants.', Environmental Science and Technology, vol. 37, no. 11, pp. 2486-2493. https://doi.org/10.1021/es0209215

APA

Harner, T., Farrar, N., Shoeib, M., Jones, K. C., & Gobas, F. A. P. C. (2003). Characterisation of polymer-coated glass (POGs) as passive air samplers for persistent organic pollutants. Environmental Science and Technology, 37(11), 2486-2493. https://doi.org/10.1021/es0209215

Vancouver

Harner T, Farrar N, Shoeib M, Jones KC, Gobas FAPC. Characterisation of polymer-coated glass (POGs) as passive air samplers for persistent organic pollutants. Environmental Science and Technology. 2003 Jun 1;37(11):2486-2493. doi: 10.1021/es0209215

Author

Harner, Tom ; Farrar, Nick ; Shoeib, Mahiba et al. / Characterisation of polymer-coated glass (POGs) as passive air samplers for persistent organic pollutants. In: Environmental Science and Technology. 2003 ; Vol. 37, No. 11. pp. 2486-2493.

Bibtex

@article{e71544e2671c4ec482fc0edaaccbd1e6,
title = "Characterisation of polymer-coated glass (POGs) as passive air samplers for persistent organic pollutants.",
abstract = "The use of thin-film polymer-coated glass surfaces or POGs as passive air samplers was investigated during an uptake experiment in an indoor environment with high levels of gas-phase polychlorinated biphenyls (PCBs). POGs consisted of a micron thick layer of ethylene vinyl acetate (EVA) coated onto glass cylinders. The uptake was initially linear with time and governed by the air-side mass transfer coefficient and surface area of the sampler. This was followed by a curvilinear region and finally a constant phase when equilibrium was established between air and EVA. The high surface area-to-volume ratio of the POGs allowed rapid equilibrium with gas-phase PCBs; equilibration times were on the order of hours for the low molecular weight congeners. The equilibrium concentration was dependent on the EVA-air partition coefficient, KEVA-A, which was shown to be very well correlated to the octanol−air partition coefficient, KOA. When POGs of varying thickness were equilibrated with air, the amount of PCB accumulated increased with increasing thickness of the EVA, indicating that uptake was by absorption into the entire polymer matrix. A wind field of 4 m s-1 resulted in an increased uptake rate by a factor of approximately six compared to uptake in relatively still air. This wind speed effect was diminished, however, when POGs were housed in deployment chambers consisting of inverted stainless steel bowls. Relationships based on the air-side mass transfer coefficient and KEVA-A were developed for PCBs that describe the entire uptake profile and allow air concentrations to be determined from the amount of chemical accumulated in the POG. It is believed that these relationships are also valid when POGs are used to detect other classes of persistent organic pollutants.",
author = "Tom Harner and Nick Farrar and Mahiba Shoeib and Jones, {Kevin C.} and Gobas, {Frank A. P. C.}",
year = "2003",
month = jun,
day = "1",
doi = "10.1021/es0209215",
language = "English",
volume = "37",
pages = "2486--2493",
journal = "Environmental Science and Technology",
issn = "0013-936X",
publisher = "American Chemical Society",
number = "11",

}

RIS

TY - JOUR

T1 - Characterisation of polymer-coated glass (POGs) as passive air samplers for persistent organic pollutants.

AU - Harner, Tom

AU - Farrar, Nick

AU - Shoeib, Mahiba

AU - Jones, Kevin C.

AU - Gobas, Frank A. P. C.

PY - 2003/6/1

Y1 - 2003/6/1

N2 - The use of thin-film polymer-coated glass surfaces or POGs as passive air samplers was investigated during an uptake experiment in an indoor environment with high levels of gas-phase polychlorinated biphenyls (PCBs). POGs consisted of a micron thick layer of ethylene vinyl acetate (EVA) coated onto glass cylinders. The uptake was initially linear with time and governed by the air-side mass transfer coefficient and surface area of the sampler. This was followed by a curvilinear region and finally a constant phase when equilibrium was established between air and EVA. The high surface area-to-volume ratio of the POGs allowed rapid equilibrium with gas-phase PCBs; equilibration times were on the order of hours for the low molecular weight congeners. The equilibrium concentration was dependent on the EVA-air partition coefficient, KEVA-A, which was shown to be very well correlated to the octanol−air partition coefficient, KOA. When POGs of varying thickness were equilibrated with air, the amount of PCB accumulated increased with increasing thickness of the EVA, indicating that uptake was by absorption into the entire polymer matrix. A wind field of 4 m s-1 resulted in an increased uptake rate by a factor of approximately six compared to uptake in relatively still air. This wind speed effect was diminished, however, when POGs were housed in deployment chambers consisting of inverted stainless steel bowls. Relationships based on the air-side mass transfer coefficient and KEVA-A were developed for PCBs that describe the entire uptake profile and allow air concentrations to be determined from the amount of chemical accumulated in the POG. It is believed that these relationships are also valid when POGs are used to detect other classes of persistent organic pollutants.

AB - The use of thin-film polymer-coated glass surfaces or POGs as passive air samplers was investigated during an uptake experiment in an indoor environment with high levels of gas-phase polychlorinated biphenyls (PCBs). POGs consisted of a micron thick layer of ethylene vinyl acetate (EVA) coated onto glass cylinders. The uptake was initially linear with time and governed by the air-side mass transfer coefficient and surface area of the sampler. This was followed by a curvilinear region and finally a constant phase when equilibrium was established between air and EVA. The high surface area-to-volume ratio of the POGs allowed rapid equilibrium with gas-phase PCBs; equilibration times were on the order of hours for the low molecular weight congeners. The equilibrium concentration was dependent on the EVA-air partition coefficient, KEVA-A, which was shown to be very well correlated to the octanol−air partition coefficient, KOA. When POGs of varying thickness were equilibrated with air, the amount of PCB accumulated increased with increasing thickness of the EVA, indicating that uptake was by absorption into the entire polymer matrix. A wind field of 4 m s-1 resulted in an increased uptake rate by a factor of approximately six compared to uptake in relatively still air. This wind speed effect was diminished, however, when POGs were housed in deployment chambers consisting of inverted stainless steel bowls. Relationships based on the air-side mass transfer coefficient and KEVA-A were developed for PCBs that describe the entire uptake profile and allow air concentrations to be determined from the amount of chemical accumulated in the POG. It is believed that these relationships are also valid when POGs are used to detect other classes of persistent organic pollutants.

U2 - 10.1021/es0209215

DO - 10.1021/es0209215

M3 - Journal article

VL - 37

SP - 2486

EP - 2493

JO - Environmental Science and Technology

JF - Environmental Science and Technology

SN - 0013-936X

IS - 11

ER -