12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Comment on "Parent body depth-pressure-temperat...
View graph of relations

« Back

Comment on "Parent body depth-pressure-temperature relationships and the style of the ureilite anatexis" by P.H. Warren.

Research output: Contribution to journalJournal article

Published

  • Cyrena Anne Goodrich
  • Lionel Wilson
  • James A. Van Orman
  • Patrick Michel
Journal publication date06/2013
JournalMeteoritics and Planetary Science
Journal number6
Volume48
Number of pages11
Pages1096-1106
Original languageEnglish

Abstract

Ureilites are carbon-rich ultramafic (olivine + dominantly low-Ca pyroxene) achondrites with poorly understood petrogenesis. One major problem concerns the origin of extensive variation in FeO content (olivine core Fo values ranging from approximately 75 to 95) among the individual ureilites. The two main competing hypotheses to explain this variation are: (1) equilibrium smelting, in which ureilite Fo values were established by pressure-dependent (depth-linked) carbon redox reactions on the ureilite parent body during partial melting; or (2) nebular inheritance, in which the variation in FeO contents was derived from ureilite precursors and was preserved during partial melting. The paper “Parent body depth-pressure-temperature relationships and the style of the ureilite anatexis” by Warren (2012) discusses a series of topics related to ureilite petrogenesis. In each case, an argument is presented within the context of smelting versus nonsmelting models. Collectively, these arguments create the impression that there are many valid arguments against smelting. The purpose of this comment is to point out flaws in some of these arguments, and/or to show that the issues they address are independent of smelting versus nonsmelting models. Both equilibrium smelting and nebular inheritance (simple anatexis) models face challenges in explaining all the properties of ureilites, but both remain viable.