Home > Research > Publications & Outputs > Comparison of three vertically resolved ozone d...

Links

Text available via DOI:

View graph of relations

Comparison of three vertically resolved ozone data sets: Climatology, trends and radiative forcings

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Comparison of three vertically resolved ozone data sets: Climatology, trends and radiative forcings. / Hassler, B.; Young, P. J.; Portmann, R. W. et al.
In: Atmospheric Chemistry and Physics, Vol. 13, No. 11, 06.06.2013, p. 5533-5550.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Hassler, B, Young, PJ, Portmann, RW, Bodeker, GE, Daniel, JS, Rosenlof, KH & Solomon, S 2013, 'Comparison of three vertically resolved ozone data sets: Climatology, trends and radiative forcings', Atmospheric Chemistry and Physics, vol. 13, no. 11, pp. 5533-5550. https://doi.org/10.5194/acp-13-5533-2013

APA

Hassler, B., Young, P. J., Portmann, R. W., Bodeker, G. E., Daniel, J. S., Rosenlof, K. H., & Solomon, S. (2013). Comparison of three vertically resolved ozone data sets: Climatology, trends and radiative forcings. Atmospheric Chemistry and Physics, 13(11), 5533-5550. https://doi.org/10.5194/acp-13-5533-2013

Vancouver

Hassler B, Young PJ, Portmann RW, Bodeker GE, Daniel JS, Rosenlof KH et al. Comparison of three vertically resolved ozone data sets: Climatology, trends and radiative forcings. Atmospheric Chemistry and Physics. 2013 Jun 6;13(11):5533-5550. doi: 10.5194/acp-13-5533-2013

Author

Hassler, B. ; Young, P. J. ; Portmann, R. W. et al. / Comparison of three vertically resolved ozone data sets : Climatology, trends and radiative forcings. In: Atmospheric Chemistry and Physics. 2013 ; Vol. 13, No. 11. pp. 5533-5550.

Bibtex

@article{7206c3c330b34fe5ba5121a205411d6c,
title = "Comparison of three vertically resolved ozone data sets: Climatology, trends and radiative forcings",
abstract = "Climate models that do not simulate changes in stratospheric ozone concentrations require the prescription of ozone fields to accurately calculate UV fluxes and stratospheric heating rates. In this study, three different global ozone time series that are available for this purpose are compared: the data set of Randel and Wu (2007) (RW07), Cionni et al. (2011) (SPARC), and Bodeker et al. (2013) (BDBP). All three data sets represent multiple-linear regression fits to vertically resolved ozone observations, resulting in a spatially and temporally continuous stratospheric ozone field covering at least the period from 1979 to 2005. The main differences among the data sets result from regression models, which use different observations and include different basis functions. The data sets are compared against ozonesonde and satellite observations to assess how the data sets represent concentrations, trends and interannual variability. In the Southern Hemisphere polar region, RW07 and SPARC underestimate the ozone depletion in spring ozonesonde measurements. A piecewise linear trend regression is performed to estimate the 1979-1996 ozone decrease globally, covering a period of extreme depletion in most regions. BDBP overestimates Arctic and tropical ozone depletion over this period relative to the available measurements, whereas the depletion is underestimated in RW07 and SPARC. While the three data sets yield ozone concentrations that are within a range of different observations, there is a large spread in their respective ozone trends. One consequence of this is differences of almost a factor of four in the calculated stratospheric ozone radiative forcing between the data sets (RW07: -0.038 Wm-2, SPARC: -0.033 Wm-2, BDBP: -0.119 Wm-2), important in assessing the contribution of stratospheric ozone depletion to the total anthropogenic radiative forcing.",
author = "B. Hassler and Young, {P. J.} and Portmann, {R. W.} and Bodeker, {G. E.} and Daniel, {J. S.} and Rosenlof, {K. H.} and S. Solomon",
year = "2013",
month = jun,
day = "6",
doi = "10.5194/acp-13-5533-2013",
language = "English",
volume = "13",
pages = "5533--5550",
journal = "Atmospheric Chemistry and Physics",
issn = "1680-7316",
publisher = "Copernicus GmbH (Copernicus Publications) on behalf of the European Geosciences Union (EGU)",
number = "11",

}

RIS

TY - JOUR

T1 - Comparison of three vertically resolved ozone data sets

T2 - Climatology, trends and radiative forcings

AU - Hassler, B.

AU - Young, P. J.

AU - Portmann, R. W.

AU - Bodeker, G. E.

AU - Daniel, J. S.

AU - Rosenlof, K. H.

AU - Solomon, S.

PY - 2013/6/6

Y1 - 2013/6/6

N2 - Climate models that do not simulate changes in stratospheric ozone concentrations require the prescription of ozone fields to accurately calculate UV fluxes and stratospheric heating rates. In this study, three different global ozone time series that are available for this purpose are compared: the data set of Randel and Wu (2007) (RW07), Cionni et al. (2011) (SPARC), and Bodeker et al. (2013) (BDBP). All three data sets represent multiple-linear regression fits to vertically resolved ozone observations, resulting in a spatially and temporally continuous stratospheric ozone field covering at least the period from 1979 to 2005. The main differences among the data sets result from regression models, which use different observations and include different basis functions. The data sets are compared against ozonesonde and satellite observations to assess how the data sets represent concentrations, trends and interannual variability. In the Southern Hemisphere polar region, RW07 and SPARC underestimate the ozone depletion in spring ozonesonde measurements. A piecewise linear trend regression is performed to estimate the 1979-1996 ozone decrease globally, covering a period of extreme depletion in most regions. BDBP overestimates Arctic and tropical ozone depletion over this period relative to the available measurements, whereas the depletion is underestimated in RW07 and SPARC. While the three data sets yield ozone concentrations that are within a range of different observations, there is a large spread in their respective ozone trends. One consequence of this is differences of almost a factor of four in the calculated stratospheric ozone radiative forcing between the data sets (RW07: -0.038 Wm-2, SPARC: -0.033 Wm-2, BDBP: -0.119 Wm-2), important in assessing the contribution of stratospheric ozone depletion to the total anthropogenic radiative forcing.

AB - Climate models that do not simulate changes in stratospheric ozone concentrations require the prescription of ozone fields to accurately calculate UV fluxes and stratospheric heating rates. In this study, three different global ozone time series that are available for this purpose are compared: the data set of Randel and Wu (2007) (RW07), Cionni et al. (2011) (SPARC), and Bodeker et al. (2013) (BDBP). All three data sets represent multiple-linear regression fits to vertically resolved ozone observations, resulting in a spatially and temporally continuous stratospheric ozone field covering at least the period from 1979 to 2005. The main differences among the data sets result from regression models, which use different observations and include different basis functions. The data sets are compared against ozonesonde and satellite observations to assess how the data sets represent concentrations, trends and interannual variability. In the Southern Hemisphere polar region, RW07 and SPARC underestimate the ozone depletion in spring ozonesonde measurements. A piecewise linear trend regression is performed to estimate the 1979-1996 ozone decrease globally, covering a period of extreme depletion in most regions. BDBP overestimates Arctic and tropical ozone depletion over this period relative to the available measurements, whereas the depletion is underestimated in RW07 and SPARC. While the three data sets yield ozone concentrations that are within a range of different observations, there is a large spread in their respective ozone trends. One consequence of this is differences of almost a factor of four in the calculated stratospheric ozone radiative forcing between the data sets (RW07: -0.038 Wm-2, SPARC: -0.033 Wm-2, BDBP: -0.119 Wm-2), important in assessing the contribution of stratospheric ozone depletion to the total anthropogenic radiative forcing.

U2 - 10.5194/acp-13-5533-2013

DO - 10.5194/acp-13-5533-2013

M3 - Journal article

AN - SCOPUS:84879005388

VL - 13

SP - 5533

EP - 5550

JO - Atmospheric Chemistry and Physics

JF - Atmospheric Chemistry and Physics

SN - 1680-7316

IS - 11

ER -