12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Complex mixtures that may contain mutagenic and...
View graph of relations

« Back

Complex mixtures that may contain mutagenic and/or genotoxic components : a need to assess in vivo target-site effect(s) associated with in vitro-positive(s).

Research output: Contribution to journalJournal article

Published

Journal publication date10/2007
JournalChemosphere
Journal number6
Volume69
Number of pages8
Pages841-848
Original languageEnglish

Abstract

A battery of short-term in vitro assays and/or in vivo protocols to evaluate single-agent mutagenicity and/or genotoxicity is available. However, a protocol to assess the effect(s) of complex mixtures in vivo following a positive test finding in vitro remains difficult. Complex interactions may occur in vivo because component pharmacokinetics increases the unpredictability of pharmacodynamic outcomes. The question arises as to whether in vitro mutagenic component(s) of a complex mixture, probably unidentified, reach target organ(s) in vivo at a sufficient concentration. To address the issue of an in vitro positive, standard in vivo chromosome damage assays to test both mixtures and fractions could be conducted but, to assess site-of-contact effects, the alkaline single cell-gel electrophoresis (“comet”) assay or DNA reactivity (e.g., 32P-postlabelling of DNA adducts) might be employed. A newer approach may be the derivation of a “biochemical-cell fingerprint” of potential target sites using infrared microspectroscopy. There is interest in platforms such as gene expression, proteomics, epigenomics or metabolomics as biomarkers of signature genotoxic or non-genotoxic mechanisms. One still needs to address whether a mutagenic and/or genotoxic component reaches a target organ. An approach to track levels of target-organ exposure may be to radio-label components with a short-lived positron-emitting radionuclide. The parent compound retains its physicochemical properties whilst allowing non-invasive in vivo tissue-specific imaging. However, determining target-organ concentration(s) and effect(s) in vivo remains a difficult challenge.