Home > Research > Publications & Outputs > Composition and process parameter dependence of...

Associated organisational unit

Links

Text available via DOI:

View graph of relations

Composition and process parameter dependence of yield strength in laser powder bed fusion alloys

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
Article number109024
<mark>Journal publication date</mark>1/10/2020
<mark>Journal</mark>Materials and Design
Volume195
Number of pages11
Publication StatusPublished
Early online date4/08/20
<mark>Original language</mark>English

Abstract

Understanding the factors influencing yield strengthening in alloys processed by laser powder bed fusion (LPBF) is critical in designing new formulations, and for predicting the optimum parameters for their processing. In this work, a relationship between the heat input and strengthening and softening mechanisms is proposed for a titanium, nickel and stainless steel alloy (Ti-6Al-4V, IN718 and 316L, respectively). Maximum strength is obtained with increasing heat input in 316L stainless steel; whereas IN718 and Ti-6Al-4V require low heat inputs. The results demonstrate that yield strength can be described in terms of the normalised enthalpy. The variation in the yield strength of LPBFed alloys depends prominently on dislocation multiplication/annihilation at certain processing temperatures and thermal straining, which are alloy dependent; as well as on dislocation strengthening and heat dissipation during cooling, which are process dependent. These dependencies are modelled via well-known metallurgical approaches. The relative contribution of various strengthening mechanisms is revealed. The findings of this work can be used as a metric for the prediction and further improvement of yield strength based on the choice of LPBF process parameters and chemical composition. © 2020 The Authors

Bibliographic note

Funding details: Royal Academy of Engineering, RAENG, RCSRF1718/5/32 Funding text 1: This work was supported by the Royal Academy of Engineering ( RCSRF1718/5/32 ), and the EPSRC for funding via DARE grant ( EP/L025213/1 ). The authors are grateful to Madeleine Bignon for useful discussions. References: Hadadzadeh, A., Amirkhiz, B.S., Odeshi, A., Li, J., Mohammadi, M., Role of hierarchical microstructure of additively manufactured AlSi10Mg on dynamic loading behavior (2019) Addit. Manuf., 28, pp. 1-13; Dunbar, A., Denlinger, E., Heigel, J., Michaleris, P., Guerrier, P., Martukanitz, R., Simpson, T.W., Development of experimental method for in situ distortion and temperature measurements during the laser powder bed fusion additive manufacturing process (2016) Addit. Manuf., 12, pp. 25-30; King, W.E., Anderson, A.T., Ferencz, R., Hodge, N., Kamath, C., Khairallah, S.A., Rubenchik, A.M., Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges (2015) Appl. Phys. Rev., 2 (4); Masoomi, M., Thompson, S.M., Shamsaei, N., Laser powder bed fusion of Ti-6Al-4V parts: thermal modeling and mechanical implications (2017) Int. J. Mach. Tools Manuf., 118, pp. 73-90; Caiazzo, F., Alfieri, V., Corrado, G., Argenio, P., Laser powder-bed fusion of Inconel 718 to manufacture turbine blades (2017) The. Int. J. Adv. Manuf. Tech., 93 (9-12), pp. 4023-4031; Denlinger, E.R., Gouge, M., Irwin, J., Michaleris, P., Thermomechanical model development and in situ experimental validation of the laser powder-bed fusion process (2017) Addit. Manuf., 16, pp. 73-80; Gu, D.D., Meiners, W., Wissenbach, K., Poprawe, R., Laser additive manufacturing of metallic components: materials, processes and mechanisms (2012) Int. Mater. Rev., 57 (3), pp. 133-164; Wang, Y.M., Voisin, T., McKeown, J.T., Ye, J., Calta, N.P., Li, Z., Zeng, Z., Roehling, T.T., Additively manufactured hierarchical stainless steels with high strength and ductility (2018) Nat. Mater., 17 (1), pp. 63-71; Galindo-Fernández, M., Mumtaz, K., Rivera-Daz-del Castillo, P.E.J., Galindo-Nava, E.I., Ghadbeigi, H., A microstructure sensitive model for deformation of Ti-6Al-4V describing cast-and-wrought and additive manufacturing morphologies (2018) Mater. Des., 160, pp. 350-362; Kuo, Y.-L., Horikawa, S., Kakehi, K., The effect of interdendritic δ phase on the mechanical properties of alloy 718 built up by additive manufacturing (2017) Mater. Des., 116, pp. 411-418; Liu, L., Ding, Q., Zhong, Y., Zou, J., Wu, J., Chiu, Y.-L., Li, J., Shen, Z., Dislocation network in additive manufactured steel breaks strength–ductility trade-off (2018) Mater. Today, 21 (4), pp. 354-361; Gallmeyer, T.G., Moorthy, S., Kappes, B.B., Mills, M.J., Amin-Ahmadi, B., Stebner, A.P., Knowledge of process-structure-property relationships to engineer better heat treatments for laser powder bed fusion additive manufactured Inconel 718 (2020) Addit. Manuf., 31, p. 100977; Zhao, X., Li, S., Zhang, M., Liu, Y., Sercombe, T.B., Wang, S., Hao, Y., Murr, L.E., Comparison of the microstructures and mechanical properties of Ti–6Al–4V fabricated by selective laser melting and electron beam melting (2016) Mater. Des., 95, pp. 21-31; Zhang, Q., Xie, J., London, T., Griffiths, D., Bhamji, I., Oancea, V., Estimates of the mechanical properties of laser powder bed fusion Ti-6Al-4V parts using finite element models (2019) Mater. Des., 169, p. 107678; Tang, M., Pistorius, P.C., Beuth, J.L., Prediction of lack-of-fusion porosity for powder bed fusion (2017) Addit. Manuf., 14, pp. 39-48; Tong, J., Bowen, C., Persson, J., Plummer, A., Mechanical properties of titanium-based Ti–6Al–4V alloys manufactured by powder bed additive manufacture (2017) Mater. Sci. Technol., 33 (2), pp. 138-148; Fayazfar, H., Salarian, M., Rogalsky, A., Sarker, D., Russo, P., Paserin, V., Toyserkani, E., A critical review of powder-based additive manufacturing of ferrous alloys: process parameters, microstructure and mechanical properties (2018) Mater. Des., 144, pp. 98-128; DebRoy, T., Wei, H., Zuback, J., Mukherjee, T., Elmer, J., Milewski, J., Beese, A.M., Zhang, W., Additive manufacturing of metallic components–process, structure and properties (2018) Prog. Mater. Sci., 92, pp. 112-224; Samuel, E.I., Choudhary, B., Rao, K.B.S., Influence of temperature and strain rate on tensile work hardening behaviour of type 316 LN austenitic stainless steel (2002) Scr. Mater., 46 (7), pp. 507-512; Azarbarmas, M., Aghaie-Khafri, M., Cabrera, J., Calvo, J., Dynamic recrystallization mechanisms and twining evolution during hot deformation of Inconel 718 (2016) Mater. Sci. Eng. A, 678, pp. 137-152; Fan, Y., Cheng, P., Yao, Y.L., Yang, Z., Egland, K., Effect of phase transformations on laser forming of Ti–6Al–4V alloy (2005) J. Appl. Phys., 98 (1); Beese, A.M., Carroll, B.E., Review of mechanical properties of Ti-6Al-4V made by laser-based additive manufacturing using powder feedstock (2016) JOM., 68 (3), pp. 724-734; Eskandari Sabzi, H., Rivera-Daz-del Castillo, P.E.J., Defect prevention in selective laser melting components: compositional and process effects (2019) Materials, 12 (22), p. 3791; Eskandari Sabzi, H., Maeng, S., Liang, X., Simonelli, M., Aboulkhair, N.T., Rivera-Daz-del Castillo, P.E.J., Controlling crack formation and porosity in laser powder bed fusion: alloy design and process optimisation (2020) Addit. Manuf., , 101360; Ali, H., Ghadbeigi, H., Mumtaz, K., Processing parameter effects on residual stress and mechanical properties of selective laser melted Ti6Al4V (2018) J. Mater. Eng. Perform., 27 (8), pp. 4059-4068; Aydinöz, M., Brenne, F., Schaper, M., Schaak, C., Tillmann, W., Nellesen, J., Niendorf, T., On the microstructural and mechanical properties of post-treated additively manufactured Inconel 718 superalloy under quasi-static and cyclic loading (2016) Mater. Sci. Eng. A, 669, pp. 246-258; Popovich, V., Borisov, E., Popovich, A., Sufiiarov, V.S., Masaylo, D., Alzina, L., Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting (2017) Mater. Des., 131, pp. 12-22; Tran, H.T., Chen, Q., Mohan, J., A. C. To, A new method for predicting cracking at the interface between solid and lattice support during laser powder bed fusion additive manufacturing (2020) Addit. Manuf., , 101050; Lu, Q., Nguyen, N., Hum, A., Tran, T., Wong, C., Optical in-situ monitoring and correlation of density and mechanical properties of stainless steel parts produced by selective laser melting process based on varied energy density (2019) J. Mater. Process. Technol., 271, pp. 520-531; Wilson-Heid, A., Novak, T., Beese, A.M., Characterization of the effects of internal pores on tensile properties of additively manufactured austenitic stainless steel 316L (2019) Exp. Mech., 59 (6), pp. 793-804; Pauzon, C., Forêt, P., Hryha, E., Arunprasad, T., Nyborg, L., Argon-helium mixtures as laser-powder bed fusion atmospheres: towards increased build rate of Ti-6Al-4V (2020) J. Mater. Process. Technol., 279, p. 116555; Salman, O., Brenne, F., Niendorf, T., Eckert, J., Prashanth, K., He, T., Scudino, S., Impact of the scanning strategy on the mechanical behavior of 316L steel synthesized by selective laser melting (2019) J. Manuf. Process., 45, pp. 255-261; Mertens, A., Reginster, S., Paydas, H., Contrepois, Q., Dormal, T., Lemaire, O., Lecomte-Beckers, J., Mechanical properties of alloy Ti–6Al–4V and of stainless steel 316L processed by selective laser melting: influence of out-of-equilibrium microstructures (2014) Powder Metall., 57 (3), pp. 184-189; Karayagiz, K., Elwany, A., Tapia, G., Franco, B., Johnson, L., Ma, J., Karaman, I., Arroyave, R., Numerical and experimental analysis of heat distribution in the laser powder bed fusion of Ti-6Al-4V (2019) IISE. Trans., 51 (2), pp. 136-152; Promoppatum, P., Yao, S.-C., Pistorius, P.C., Rollett, A.D., A comprehensive comparison of the analytical and numerical prediction of the thermal history and solidification microstructure of Inconel 718 products made by laser powder-bed fusion (2017) Engineering., 3 (5), pp. 685-694; Andersson, J.-O., Helander, T., Höglund, L., Shi, P., Sundman, B., Thermo-Calc & DICTRA, computational tools for materials science (2002) CALPHAD, 26 (2), pp. 273-312; Soylemez, E., High deposition rate approach of selective laser melting through defocused single bead experiments and thermal finite element analysis for Ti-6Al-4V (2020) Addit. Manuf., 31, p. 100984; Liu, P., Wang, Z., Xiao, Y., Horstemeyer, M.F., Cui, X., Chen, L., Insight into the mechanisms of columnar to equiaxed grain transition during metallic additive manufacturing (2019) Addit. Manuf., 26, pp. 22-29; Puchi Cabrera, E., High temperature deformation of 316L stainless steel (2001) Mater. Sci. Technol., 17 (2), pp. 155-161; Follansbee, P., Gray, G., An analysis of the low temperature, low and high strain-rate deformation of Ti- 6Al- 4V (1989) Metall. Trans. A., 20 (5), pp. 863-874; Thomas, A., El-Wahabi, M., Cabrera, J., Prado, J., High temperature deformation of Inconel 718 (2006) J. Mater. Process. Technol., 177 (1-3), pp. 469-472; Robertson, C., Fivel, M., Fissolo, A., Dislocation substructure in 316L stainless steel under thermal fatigue up to 650 K (2001) Mater. Sci. Eng. A, 315 (1-2), pp. 47-57; Fisk, M., Ion, J.C., Lindgren, L.-E., Flow stress model for IN718 accounting for evolution of strengthening precipitates during thermal treatment (2014) Comput. Mater. Sci., 82, pp. 531-539; Bertoli, U.S., MacDonald, B.E., Schoenung, J.M., Stability of cellular microstructure in laser powder bed fusion of 316l stainless steel (2019) Mater. Sci. Eng. A, 739, pp. 109-117; Labudovic, M., Kovacevic, R., Kmecko, I., Khan, T., Blecic, D., Blecic, Z., Mechanism of surface modification of the Ti-6Al-4V alloy using a gas tungsten arc heat source (1999) Metall. Mater. Trans. A., 30 (6), pp. 1597-1603; Wolff, S.J., Gan, Z., Lin, S., Bennett, J.L., Yan, W., Hyatt, G., Ehmann, K.F., Cao, J., Experimentally validated predictions of thermal history and microhardness in laser-deposited Inconel 718 on carbon steel (2019) Addit. Manuf., 27, pp. 540-551; Jiang, W., Zhang, Y., Woo, W., Using heat sink technology to decrease residual stress in 316L stainless steel welding joint: finite element simulation (2012) Int. J. Press. Vessel. Pip., 92, pp. 56-62; Queheillalt, D.T., Wadley, H.N., Choi, B.W., Schwartz, D.S., Creep expansion of porous Ti-6Al-4V sandwich structures (2000) Metall. Mater. Trans. A., 31 (1), pp. 261-273; Dye, D., Conlon, K., Reed, R., Characterization and modeling of quenching-induced residual stresses in the nickel-based superalloy IN718 (2004) Metall. Mater. Trans. A., 35 (6), pp. 1703-1713; Galindo-Nava, E.I., Sietsma, J., (2012), pp. 2615-2624. , P. E. J. Rivera-Díaz-del Castillo, Dislocation annihilation in plastic deformation: II. kocks–mecking analysis, Acta. Mater. 60 (6–7); Nandwana, P., Lee, Y., Influence of scan strategy on porosity and microstructure of Ti-6Al-4V fabricated by electron beam powder bed fusion (2020) Mater. Today. Communications., , 100962; Li, S., Xiao, H., Liu, K., Xiao, W., Li, Y., Han, X., Mazumder, J., Song, L., Melt-pool motion, temperature variation and dendritic morphology of Inconel 718 during pulsed-and continuous-wave laser additive manufacturing: a comparative study (2017) Mater. Des., 119, pp. 351-360; Estrin, Y., Toth, L., Molinari, A., Bréchet, Y., A dislocation-based model for all hardening stages in large strain deformation (1998) Acta Mater., 46 (15), pp. 5509-5522; Headings, L.M., Kotian, K., Dapino, M.J., Speed of Sound Measurement in Solids Using Polyvinylidene Fluoride (PVDF) Sensors, in: ASME 2013 Conference on Smart Materials (2013), Adaptive Structures and Intelligent Systems American Society of Mechanical Engineers Digital Collection; Smallman, R.E., Bishop, R.J., Modern Physical Metallurgy and Materials Engineering (1999), Elsevier; Le Bacq, O., Willaime, F., Pasturel, A., Unrelaxed vacancy formation energies in group-iv elements calculated by the full-potential linear muffin-tin orbital method: invariance with crystal structure (1999) Phys. Rev. B, 59 (13), p. 8508; Cahn, R.W., Haasen, P., (1983) Physical metallurgy 3rd revised and enlarged edition. North-Holland Physics Publishing, Amsterdam, , Oxford New York, Tokyo Part 1 and 2; King, W.E., Barth, H.D., Castillo, V.M., Gallegos, G.F., Gibbs, J.W., Hahn, D.E., Kamath, C., Rubenchik, A.M., Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing (2014) J. Mater. Process. Technol., 214 (12), pp. 2915-2925; Madec, R., Devincre, B., Kubin, L.P., From dislocation junctions to forest hardening (2002) Phys. Rev. Lett., 89 (25), p. 255508; Roters, F., Raabe, D., Gottstein, G., Work hardening in heterogeneous alloys—a microstructural approach based on three internal state variables (2000) Acta Mater., 48 (17), pp. 4181-4189; Galindo-Nava, E.I., Rivera-Díaz-del Castillo, P.E.J., A thermodynamic theory for dislocation cell formation and misorientation in metals (2012) Acta Mater., 60 (11), pp. 4370-4378; Galindo-Nava, E.I., Rivera-Díaz-del Castillo, P.E.J., Modelling plastic deformation in BCC metals: dynamic recovery and cell formation effects (2012) Mater. Sci. Eng. A, 558, pp. 641-648; Galindo-Nava, E.I., Rivera-Díaz-del Castillo, P.E.J., Thermostatistical modelling of hot deformation in FCC metals (2013) Int. J. Plast., 47, pp. 202-221; Hunt, J., Solidification and Casting of Metals, the Metal Society, London 3 (1979); Kocks, U., Mecking, H., Physics and phenomenology of strain hardening: the FCC case (2003) Prog. Mater. Sci., 48 (3), pp. 171-273; Zhu, Z., Nguyen, Q., Ng, F., An, X., Liao, X., Liaw, P., Nai, S., Wei, J., Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting (2018) Scr. Mater., 154, pp. 20-24; Hossain, R., Pahlevani, F., Sahajwalla, V., Revealing the mechanism of extraordinary hardness without compensating the toughness in a low alloyed high carbon steel (2020) Sci. Rep., 10 (1), pp. 1-13; Kashyap, B., McTaggart, K., Tangri, K., Study on the substructure evolution and flow behaviour in type 316L stainless steel over the temperature range 21–900 C (1988) Philos. Mag. A., 57 (1), pp. 97-114; Venugopal, S., Mannan, S., Prasad, Y., Processing map for hot working of stainless steel type AISI 316L (1993) Mater. Sci. Technol., 9 (10), pp. 899-906; Choudhary, B., Influence of strain rate and temperature on tensile deformation and fracture behavior of type 316L (N) austenitic stainless steel (2014) Metall. Mater. Trans. A., 45 (1), pp. 302-316; Ohno, N., Wang, J.-D., Kinematic hardening rules with critical state of dynamic recovery, part I: formulation and basic features for ratchetting behavior (1993) Int. J. Plast., 9 (3), pp. 375-390; Matsumoto, H., Bin, L., Lee, S.-H., Li, Y., Ono, Y., Chiba, A., Frequent occurrence of discontinuous dynamic recrystallization in Ti-6Al-4V alloy with α martensite starting microstructure (2013) Metall. Mater. Trans. A., 44 (7), pp. 3245-3260; Ding, R., Guo, Z., Microstructural evolution of a Ti–6Al–4V alloy during β-phase processing: experimental and simulative investigations (2004) Mater. Sci. Eng. A, 365 (1-2), pp. 172-179; Ding, R., Guo, Z., Wilson, A., Microstructural evolution of a Ti–6Al–4V alloy during thermomechanical processing (2002) Mater. Sci. Eng. A, 327 (2), pp. 233-245; Chen, C., Coyne, J., Deformation characteristics of Ti-6Al-4V alloy under isothermal forging conditions (1976) Metall. Trans. A., 7 (12), pp. 1931-1941; Wang, X., Wang, L., Luo, L., Liu, X., Tang, Y., Li, X., Chen, R., Fu, H., Hot deformation behavior and dynamic recrystallization of melt hydrogenated Ti-6Al-4V alloy (2017) J. Alloys Compd., 728, pp. 709-718; Humphreys, F.J., Hatherly, M., Recrystallization and Related Annealing Phenomena (2012), Elsevier; Medeiros, S., Prasad, Y., Frazier, W.G., Srinivasan, R., Microstructural modeling of metadynamic recrystallization in hot working of IN 718 superalloy (2000) Mater. Sci. Eng. A, 293 (1-2), pp. 198-207; Zouari, M., Bozzolo, N., Loge, R.E., Mean field modelling of dynamic and post-dynamic recrystallization during hot deformation of Inconel 718 in the absence of δ phase particles (2016) Mater. Sci. Eng. A, 655, pp. 408-424; Sui, F.-L., Xu, L.-X., Chen, L.-Q., Liu, X.-H., Processing map for hot working of Inconel 718 alloy (2011) J. Mater. Process. Technol., 211 (3), pp. 433-440; De Jaeger, J., Solas, D., Fandeur, O., Schmitt, J.-H., Rey, C., 3D numerical modeling of dynamic recrystallization under hot working: application to Inconel 718 (2015) Mater. Sci. Eng. A, 646, pp. 33-44; Li, Z., He, B., Guo, Q., Strengthening and hardening mechanisms of additively manufactured stainless steels: the role of cell sizes (2020) Scr. Mater., 177, pp. 17-21; Trapp, J., Rubenchik, A.M., Guss, G., Matthews, M.J., In situ absorptivity measurements of metallic powders during laser powder-bed fusion additive manufacturing (2017) Appl. Mater. Today, 9, pp. 341-349; Rivera-Díaz-del Castillo, P.E.J., Hayashi, K., Galindo-Nava, E.I., Computational design of nanostructured steels employing irreversible thermodynamics (2013) Mater. Sci. Technol., 29 (10), pp. 1206-1211