Home > Research > Publications & Outputs > Compositional variation in minerals of the chev...
View graph of relations

Compositional variation in minerals of the chevkinite group.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Compositional variation in minerals of the chevkinite group. / MacDonald, Raymond; Belkin, H. E.
In: Mineralogical Magazine, Vol. 66, No. 6, 01.12.2002, p. 1075-1098.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

MacDonald, R & Belkin, HE 2002, 'Compositional variation in minerals of the chevkinite group.', Mineralogical Magazine, vol. 66, no. 6, pp. 1075-1098. https://doi.org/10.1180/0026461026660078

APA

Vancouver

MacDonald R, Belkin HE. Compositional variation in minerals of the chevkinite group. Mineralogical Magazine. 2002 Dec 1;66(6):1075-1098. doi: 10.1180/0026461026660078

Author

MacDonald, Raymond ; Belkin, H. E. / Compositional variation in minerals of the chevkinite group. In: Mineralogical Magazine. 2002 ; Vol. 66, No. 6. pp. 1075-1098.

Bibtex

@article{aee0d663eed645a191bf18d8276e589c,
title = "Compositional variation in minerals of the chevkinite group.",
abstract = "The composition of chevkinite and perrierite, the most common members of the chevkinite group, is closely expressed by the formula A4BC2D2Si4O22, where A = (La,Ce,Ca,Sr,Th), B = Fe2+, C = (Fe2+,Fe3+,Ti,Al,Zr,Nb) and D = Ti. The A site is dominated by a strong negative correlation between (Ca+Sr) and the REE. Chondrite-normalized REE patterns are very variable, e.g. in LREE/HREE and Eu/Eu*. The C site is dominated by Ti, Al and Fe2+, in very variable proportions. Most chevkinites and perrierites are close to stoichiometric, with cation sums between 12.9 and 13.5, compared to the theoretical 13. There is no single, generally applicable charge balancing substitution scheme in the group; however, the general relationship (Ca+Sr)A + TiC = REEA + MC3+,2+ defines a linear array with r2 = 0.91. Chevkinite and perrierite are shown to be compositionally distinct on the basis of CaO, FeO*, Al2O3 and Ce2O3 abundances. Chevkinite forms mainly in chemically evolved parageneses, such as syenites, rhyolites and fenites associated with carbonatite complexes. Perrierite is more commonly recorded from igneous rocks of mafic to intermediate composition. The compositional characteristics and possible structural formulae of other members of the chevkinite group are reviewed briefly.",
keywords = "CHEVKINITE, PERRIERITE, COMPOSITIONAL VARIATION.",
author = "Raymond MacDonald and Belkin, {H. E.}",
year = "2002",
month = dec,
day = "1",
doi = "10.1180/0026461026660078",
language = "English",
volume = "66",
pages = "1075--1098",
journal = "Mineralogical Magazine",
issn = "0026-461X",
publisher = "Mineralogical Society",
number = "6",

}

RIS

TY - JOUR

T1 - Compositional variation in minerals of the chevkinite group.

AU - MacDonald, Raymond

AU - Belkin, H. E.

PY - 2002/12/1

Y1 - 2002/12/1

N2 - The composition of chevkinite and perrierite, the most common members of the chevkinite group, is closely expressed by the formula A4BC2D2Si4O22, where A = (La,Ce,Ca,Sr,Th), B = Fe2+, C = (Fe2+,Fe3+,Ti,Al,Zr,Nb) and D = Ti. The A site is dominated by a strong negative correlation between (Ca+Sr) and the REE. Chondrite-normalized REE patterns are very variable, e.g. in LREE/HREE and Eu/Eu*. The C site is dominated by Ti, Al and Fe2+, in very variable proportions. Most chevkinites and perrierites are close to stoichiometric, with cation sums between 12.9 and 13.5, compared to the theoretical 13. There is no single, generally applicable charge balancing substitution scheme in the group; however, the general relationship (Ca+Sr)A + TiC = REEA + MC3+,2+ defines a linear array with r2 = 0.91. Chevkinite and perrierite are shown to be compositionally distinct on the basis of CaO, FeO*, Al2O3 and Ce2O3 abundances. Chevkinite forms mainly in chemically evolved parageneses, such as syenites, rhyolites and fenites associated with carbonatite complexes. Perrierite is more commonly recorded from igneous rocks of mafic to intermediate composition. The compositional characteristics and possible structural formulae of other members of the chevkinite group are reviewed briefly.

AB - The composition of chevkinite and perrierite, the most common members of the chevkinite group, is closely expressed by the formula A4BC2D2Si4O22, where A = (La,Ce,Ca,Sr,Th), B = Fe2+, C = (Fe2+,Fe3+,Ti,Al,Zr,Nb) and D = Ti. The A site is dominated by a strong negative correlation between (Ca+Sr) and the REE. Chondrite-normalized REE patterns are very variable, e.g. in LREE/HREE and Eu/Eu*. The C site is dominated by Ti, Al and Fe2+, in very variable proportions. Most chevkinites and perrierites are close to stoichiometric, with cation sums between 12.9 and 13.5, compared to the theoretical 13. There is no single, generally applicable charge balancing substitution scheme in the group; however, the general relationship (Ca+Sr)A + TiC = REEA + MC3+,2+ defines a linear array with r2 = 0.91. Chevkinite and perrierite are shown to be compositionally distinct on the basis of CaO, FeO*, Al2O3 and Ce2O3 abundances. Chevkinite forms mainly in chemically evolved parageneses, such as syenites, rhyolites and fenites associated with carbonatite complexes. Perrierite is more commonly recorded from igneous rocks of mafic to intermediate composition. The compositional characteristics and possible structural formulae of other members of the chevkinite group are reviewed briefly.

KW - CHEVKINITE

KW - PERRIERITE

KW - COMPOSITIONAL VARIATION.

U2 - 10.1180/0026461026660078

DO - 10.1180/0026461026660078

M3 - Journal article

VL - 66

SP - 1075

EP - 1098

JO - Mineralogical Magazine

JF - Mineralogical Magazine

SN - 0026-461X

IS - 6

ER -