We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK


93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Connectionist approaches to language learning
View graph of relations

« Back

Connectionist approaches to language learning

Research output: Contribution to journalScientific review


Journal publication date03/2009
Number of pages40
Original languageEnglish


In the past twenty years the connectionist approach to language development and learning has emerged as an alternative,e to traditional linguistic theories. This article introduces the connectionist paradigm by describing basic operating principles of neural network models as it;ell as different network architectures. The application of neural network models to explanations for linguistic problems is illustrated by reviewing a number of models for different aspects of language development, from speech sound acquisition to the development of syntax. Two main ben(fits of the connectionist approach are highlighted: implemented models offer a high degree of specificity, for a particular theory, and the explicit integration of a learning process into theory building allows for detailed investigation of the effect of he linguistic environment on a child. Issues regarding learnability or the need to assume innate and domain specific knowledge thus become an empirical question that can be answered by evaluating a model's performance.