12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Contour segmentation in 2D ultrasound medical i...
View graph of relations

« Back

Contour segmentation in 2D ultrasound medical images with particle filtering.

Research output: Contribution to journalJournal article

Published

Journal publication date05/2011
JournalMachine Vision and Applications
Journal number3
Volume22
Number of pages11
Pages551-561
Original languageEnglish

Abstract

Object segmentation in medical images is an actively investigated research area. Segmentation techniques are a valuable tool in medical diagnostics for cancer tumours and cysts, for planning surgery operations and other medical treatment. In this paper, a Monte Carlo algorithm for extracting lesion contours in ultrasound medical images is proposed. An efficient multiple model particle filter for progressive contour growing (tracking) from a starting point is developed, accounting for convex, non-circular forms of delineated contour areas. The driving idea of the proposed particle filter consists in the incorporation of different image intensity inside and outside the contour into the filter likelihood function. The filter employs image intensity gradients as measurements and requires information about four manually selected points: a seed point, a starting point, arbitrarily selected on the contour, and two additional points, bounding the measurement formation area around the contour. The filter performance is studied by segmenting contours from a number of real and simulated ultrasound medical images. Accurate contour segmentation is achieved with the proposed approach in ultrasound images with a high level of speckle noise.

Bibliographic note

The original publication is available at www.springerlink.com