Home > Research > Publications & Outputs > Cristobalite in the 2011–2012 Cordón Caulle eru...
View graph of relations

Cristobalite in the 2011–2012 Cordón Caulle eruption (Chile)

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Cristobalite in the 2011–2012 Cordón Caulle eruption (Chile). / Schipper, C. Ian; Castro, Jonathan; Tuffen, Hugh et al.
In: Bulletin of Volcanology, Vol. 77, No. 5, 34, 05.2015.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

Schipper, CI, Castro, J, Tuffen, H, Wadsworth, F, Chappell, D, Pantoja, AE, Simpson, M & Le Ru, EC 2015, 'Cristobalite in the 2011–2012 Cordón Caulle eruption (Chile)', Bulletin of Volcanology, vol. 77, no. 5, 34. https://doi.org/10.1007/s00445-015-0925-z

APA

Schipper, C. I., Castro, J., Tuffen, H., Wadsworth, F., Chappell, D., Pantoja, A. E., Simpson, M., & Le Ru, E. C. (2015). Cristobalite in the 2011–2012 Cordón Caulle eruption (Chile). Bulletin of Volcanology, 77(5), Article 34. https://doi.org/10.1007/s00445-015-0925-z

Vancouver

Schipper CI, Castro J, Tuffen H, Wadsworth F, Chappell D, Pantoja AE et al. Cristobalite in the 2011–2012 Cordón Caulle eruption (Chile). Bulletin of Volcanology. 2015 May;77(5):34. Epub 2015 Apr 10. doi: 10.1007/s00445-015-0925-z

Author

Schipper, C. Ian ; Castro, Jonathan ; Tuffen, Hugh et al. / Cristobalite in the 2011–2012 Cordón Caulle eruption (Chile). In: Bulletin of Volcanology. 2015 ; Vol. 77, No. 5.

Bibtex

@article{1dd8ceeab1d74d39987e9af6d4a80811,
title = "Cristobalite in the 2011–2012 Cord{\'o}n Caulle eruption (Chile)",
abstract = "Cristobalite is a low-pressure high-temperature polymorph of SiO2 found in many volcanic rocks. Its volcanogenic formation has received attention because (1) pure particulate cristobalite can be toxic when inhaled, and its dispersal in volcanic ash is therefore a potential hazard; and (2) its nominal stability field is at temperatures higher than those of magmatic systems, making it an interesting example of metastable crystallization. We present analyses (by XRD,SEM, EPMA, Laser Raman, and synchrotron μ-cT) of representative rhyolitic pyroclasts and of samples from different facies of the compound lava flow from the 2011–2012 eruption of Cord{\'o}n Caulle (Chile). Cristobalite was not detected in pyroclasts, negating any concern for respiratory hazards, but it makes up 0–23 wt% of lava samples, occurring as prismatic vapour-deposited crystals in vesicles and/or as a groundmass phase in microcrystalline samples. Textures of lava collectednear the vent, which best represent those generated in the conduit, indicate that pore isolation promotes vapour deposition of cristobalite. Mass balance shows that the SiO2 deposited in isolated pore space can have originated from corrosion of the adjacent groundmass. Textures of lava collected downflowwere modified during transport in the insulated interior ofthe flow, where protracted cooling, additional vesiculation events, and shearing overprint original textures. In the most slowly cooled and intensely sheared samples from the core of the flow, nearly all original pore space is lost, and vapourdeposited cristobalite crystals are crushed and incorporated into the groundmass as the vesicles in which they formed collapse by strain and compaction of the surrounding matrix.Holocrystalline lava from the core of the flow achieves high mass concentrations of cristobalite as slow cooling allows extensive microlite crystallization and devitrification to form groundmass cristobalite. Vapour deposition and devitrification act concurrently but semi-independently. Both are promoted by slow cooling, and it is ultimately devitrification that most strongly contributes to total cristobalite content in a given flow facies. Our findings provide a new field context in which to address questions that have arisen from the study of cristobalite in dome eruptions, with insight afforded by the fundamentally different emplacement geometries of flows and domes.",
keywords = "Cristobalite, Puyehue-Cord{\'o}n Caulle, Vapour phase crystallization, Rhyolite, Glass corrosion, Devitrification",
author = "Schipper, {C. Ian} and Jonathan Castro and Hugh Tuffen and Fabian Wadsworth and Deborah Chappell and Pantoja, {Andres E} and Mark Simpson and {Le Ru}, {Eric C.}",
year = "2015",
month = may,
doi = "10.1007/s00445-015-0925-z",
language = "English",
volume = "77",
journal = "Bulletin of Volcanology",
issn = "0258-8900",
publisher = "Springer-Verlag",
number = "5",

}

RIS

TY - JOUR

T1 - Cristobalite in the 2011–2012 Cordón Caulle eruption (Chile)

AU - Schipper, C. Ian

AU - Castro, Jonathan

AU - Tuffen, Hugh

AU - Wadsworth, Fabian

AU - Chappell, Deborah

AU - Pantoja, Andres E

AU - Simpson, Mark

AU - Le Ru, Eric C.

PY - 2015/5

Y1 - 2015/5

N2 - Cristobalite is a low-pressure high-temperature polymorph of SiO2 found in many volcanic rocks. Its volcanogenic formation has received attention because (1) pure particulate cristobalite can be toxic when inhaled, and its dispersal in volcanic ash is therefore a potential hazard; and (2) its nominal stability field is at temperatures higher than those of magmatic systems, making it an interesting example of metastable crystallization. We present analyses (by XRD,SEM, EPMA, Laser Raman, and synchrotron μ-cT) of representative rhyolitic pyroclasts and of samples from different facies of the compound lava flow from the 2011–2012 eruption of Cordón Caulle (Chile). Cristobalite was not detected in pyroclasts, negating any concern for respiratory hazards, but it makes up 0–23 wt% of lava samples, occurring as prismatic vapour-deposited crystals in vesicles and/or as a groundmass phase in microcrystalline samples. Textures of lava collectednear the vent, which best represent those generated in the conduit, indicate that pore isolation promotes vapour deposition of cristobalite. Mass balance shows that the SiO2 deposited in isolated pore space can have originated from corrosion of the adjacent groundmass. Textures of lava collected downflowwere modified during transport in the insulated interior ofthe flow, where protracted cooling, additional vesiculation events, and shearing overprint original textures. In the most slowly cooled and intensely sheared samples from the core of the flow, nearly all original pore space is lost, and vapourdeposited cristobalite crystals are crushed and incorporated into the groundmass as the vesicles in which they formed collapse by strain and compaction of the surrounding matrix.Holocrystalline lava from the core of the flow achieves high mass concentrations of cristobalite as slow cooling allows extensive microlite crystallization and devitrification to form groundmass cristobalite. Vapour deposition and devitrification act concurrently but semi-independently. Both are promoted by slow cooling, and it is ultimately devitrification that most strongly contributes to total cristobalite content in a given flow facies. Our findings provide a new field context in which to address questions that have arisen from the study of cristobalite in dome eruptions, with insight afforded by the fundamentally different emplacement geometries of flows and domes.

AB - Cristobalite is a low-pressure high-temperature polymorph of SiO2 found in many volcanic rocks. Its volcanogenic formation has received attention because (1) pure particulate cristobalite can be toxic when inhaled, and its dispersal in volcanic ash is therefore a potential hazard; and (2) its nominal stability field is at temperatures higher than those of magmatic systems, making it an interesting example of metastable crystallization. We present analyses (by XRD,SEM, EPMA, Laser Raman, and synchrotron μ-cT) of representative rhyolitic pyroclasts and of samples from different facies of the compound lava flow from the 2011–2012 eruption of Cordón Caulle (Chile). Cristobalite was not detected in pyroclasts, negating any concern for respiratory hazards, but it makes up 0–23 wt% of lava samples, occurring as prismatic vapour-deposited crystals in vesicles and/or as a groundmass phase in microcrystalline samples. Textures of lava collectednear the vent, which best represent those generated in the conduit, indicate that pore isolation promotes vapour deposition of cristobalite. Mass balance shows that the SiO2 deposited in isolated pore space can have originated from corrosion of the adjacent groundmass. Textures of lava collected downflowwere modified during transport in the insulated interior ofthe flow, where protracted cooling, additional vesiculation events, and shearing overprint original textures. In the most slowly cooled and intensely sheared samples from the core of the flow, nearly all original pore space is lost, and vapourdeposited cristobalite crystals are crushed and incorporated into the groundmass as the vesicles in which they formed collapse by strain and compaction of the surrounding matrix.Holocrystalline lava from the core of the flow achieves high mass concentrations of cristobalite as slow cooling allows extensive microlite crystallization and devitrification to form groundmass cristobalite. Vapour deposition and devitrification act concurrently but semi-independently. Both are promoted by slow cooling, and it is ultimately devitrification that most strongly contributes to total cristobalite content in a given flow facies. Our findings provide a new field context in which to address questions that have arisen from the study of cristobalite in dome eruptions, with insight afforded by the fundamentally different emplacement geometries of flows and domes.

KW - Cristobalite

KW - Puyehue-Cordón Caulle

KW - Vapour phase crystallization

KW - Rhyolite

KW - Glass corrosion

KW - Devitrification

U2 - 10.1007/s00445-015-0925-z

DO - 10.1007/s00445-015-0925-z

M3 - Journal article

VL - 77

JO - Bulletin of Volcanology

JF - Bulletin of Volcanology

SN - 0258-8900

IS - 5

M1 - 34

ER -