Home > Research > Publications & Outputs > Dark matter interpretations of ATLAS searches f...

Links

Text available via DOI:

View graph of relations

Dark matter interpretations of ATLAS searches for the electroweak production of supersymmetric particles in √s=8 TeV proton-proton collisions

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Dark matter interpretations of ATLAS searches for the electroweak production of supersymmetric particles in √s=8 TeV proton-proton collisions. / The ATLAS collaboration.
In: Journal of High Energy Physics, Vol. 2016, No. 9, 175, 30.09.2016.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

The ATLAS collaboration. Dark matter interpretations of ATLAS searches for the electroweak production of supersymmetric particles in √s=8 TeV proton-proton collisions. Journal of High Energy Physics. 2016 Sept 30;2016(9):175. doi: 10.1007/JHEP09(2016)175

Author

Bibtex

@article{bf9400034d0f48f4a073518015a30976,
title = "Dark matter interpretations of ATLAS searches for the electroweak production of supersymmetric particles in √s=8 TeV proton-proton collisions",
abstract = "A selection of searches by the ATLAS experiment at the LHC for the electroweak production of SUSY particles are used to study their impact on the constraints on dark matter candidates. The searches use 20 fb−1 of proton-proton collision data at √s=8 TeV. A likelihood-driven scan of a five-dimensional effective model focusing on the gaugino-higgsino and Higgs sector of the phenomenological minimal supersymmetric Standard Model is performed. This scan uses data from direct dark matter detection experiments, the relic dark matter density and precision flavour physics results. Further constraints from the ATLAS Higgs mass measurement and SUSY searches at LEP are also applied. A subset of models selected from this scan are used to assess the impact of the selected ATLAS searches in this five-dimensional parameter space. These ATLAS searches substantially impact those models for which the mass m(χ~01) of the lightest neutralino is less than 65 GeV, excluding 86% of such models. The searches have limited impact on models with larger m(χ~01) due to either heavy electroweakinos or compressed mass spectra where the mass splittings between the produced particles and the lightest supersymmetric particle is small.",
author = "Barton, {Adam Edward} and Michael Beattie and Bertram, {Iain Alexander} and Guennadi Borissov and Bouhova-Thacker, {Evelina Vassileva} and William Dearnaley and Harald Fox and Grimm, {Kathryn Ann Tschann} and Henderson, {Robert Charles William} and Gareth Hughes and Jones, {Roger William Lewis} and Vakhtang Kartvelishvili and Long, {Robin Eamonn} and Love, {Peter Allan} and Muenstermann, {Daniel Matthias Alfred} and Parker, {Adam Jackson} and Malcolm Skinner and Maria Smizanska and Walder, {James William} and Andy Wharton and {The ATLAS collaboration}",
year = "2016",
month = sep,
day = "30",
doi = "10.1007/JHEP09(2016)175",
language = "English",
volume = "2016",
journal = "Journal of High Energy Physics",
issn = "1029-8479",
publisher = "Springer-Verlag",
number = "9",

}

RIS

TY - JOUR

T1 - Dark matter interpretations of ATLAS searches for the electroweak production of supersymmetric particles in √s=8 TeV proton-proton collisions

AU - Barton, Adam Edward

AU - Beattie, Michael

AU - Bertram, Iain Alexander

AU - Borissov, Guennadi

AU - Bouhova-Thacker, Evelina Vassileva

AU - Dearnaley, William

AU - Fox, Harald

AU - Grimm, Kathryn Ann Tschann

AU - Henderson, Robert Charles William

AU - Hughes, Gareth

AU - Jones, Roger William Lewis

AU - Kartvelishvili, Vakhtang

AU - Long, Robin Eamonn

AU - Love, Peter Allan

AU - Muenstermann, Daniel Matthias Alfred

AU - Parker, Adam Jackson

AU - Skinner, Malcolm

AU - Smizanska, Maria

AU - Walder, James William

AU - Wharton, Andy

AU - The ATLAS collaboration

PY - 2016/9/30

Y1 - 2016/9/30

N2 - A selection of searches by the ATLAS experiment at the LHC for the electroweak production of SUSY particles are used to study their impact on the constraints on dark matter candidates. The searches use 20 fb−1 of proton-proton collision data at √s=8 TeV. A likelihood-driven scan of a five-dimensional effective model focusing on the gaugino-higgsino and Higgs sector of the phenomenological minimal supersymmetric Standard Model is performed. This scan uses data from direct dark matter detection experiments, the relic dark matter density and precision flavour physics results. Further constraints from the ATLAS Higgs mass measurement and SUSY searches at LEP are also applied. A subset of models selected from this scan are used to assess the impact of the selected ATLAS searches in this five-dimensional parameter space. These ATLAS searches substantially impact those models for which the mass m(χ~01) of the lightest neutralino is less than 65 GeV, excluding 86% of such models. The searches have limited impact on models with larger m(χ~01) due to either heavy electroweakinos or compressed mass spectra where the mass splittings between the produced particles and the lightest supersymmetric particle is small.

AB - A selection of searches by the ATLAS experiment at the LHC for the electroweak production of SUSY particles are used to study their impact on the constraints on dark matter candidates. The searches use 20 fb−1 of proton-proton collision data at √s=8 TeV. A likelihood-driven scan of a five-dimensional effective model focusing on the gaugino-higgsino and Higgs sector of the phenomenological minimal supersymmetric Standard Model is performed. This scan uses data from direct dark matter detection experiments, the relic dark matter density and precision flavour physics results. Further constraints from the ATLAS Higgs mass measurement and SUSY searches at LEP are also applied. A subset of models selected from this scan are used to assess the impact of the selected ATLAS searches in this five-dimensional parameter space. These ATLAS searches substantially impact those models for which the mass m(χ~01) of the lightest neutralino is less than 65 GeV, excluding 86% of such models. The searches have limited impact on models with larger m(χ~01) due to either heavy electroweakinos or compressed mass spectra where the mass splittings between the produced particles and the lightest supersymmetric particle is small.

U2 - 10.1007/JHEP09(2016)175

DO - 10.1007/JHEP09(2016)175

M3 - Journal article

VL - 2016

JO - Journal of High Energy Physics

JF - Journal of High Energy Physics

SN - 1029-8479

IS - 9

M1 - 175

ER -