We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK


97% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Deep generation of magmatic gas on the moon and...
View graph of relations

« Back

Deep generation of magmatic gas on the moon and implications for pyroclastic eruptions.

Research output: Contribution to journalJournal article


<mark>Journal publication date</mark>18/06/2003
<mark>Journal</mark>Geophysical Research Letters
<mark>Original language</mark>English


Lunar pyroclastic beads are interpreted to represent primitive magmas derived from great depths and rapidly erupted to the surface in explosive events. However, a detailed mechanism for gas generation at great depth and rapid magma transport to the surface has not yet been described. Furthermore, the pyroclastic beads are not petrogenetically related to basalts erupted near the sampling sites. We propose a model in which these conundrums are resolved through gas build-up in a low-pressure micro-environment near the tip of a magma-filled crack (dike) propagating rapidly from the magma source depth to the surface. The gas rich region consists of a free gas cavity overlying a foam extending vertically for ∼20 km. Eruption of the foam results in the widespread emplacement of unfractionated pyroclastic beads. Subsequent ascent of the underlying gas-free picritic magma is unlikely to occur, perhaps accounting for the lack of sampled eruptive equivalents.