Home > Research > Publications & Outputs > Degradation of lysine in rice seeds : effects o...
View graph of relations

Degradation of lysine in rice seeds : effects of calcium, ionic strength, S-adenosylmethionine and S-2-aminoethyl-L-cysteine on lysine 2-oxoglutarate reductase-saccharopine dehydrogenase bifunctional enzyme.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published

Standard

Degradation of lysine in rice seeds : effects of calcium, ionic strength, S-adenosylmethionine and S-2-aminoethyl-L-cysteine on lysine 2-oxoglutarate reductase-saccharopine dehydrogenase bifunctional enzyme. / Gaziola, S. A.; Sodek, L.; Arruda, P. et al.
In: Physiologia Plantarum, Vol. 110, No. 2, 10.2000, p. 164-171.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Harvard

APA

Vancouver

Author

Bibtex

@article{244e665c386944dab3239155661d1eda,
title = "Degradation of lysine in rice seeds : effects of calcium, ionic strength, S-adenosylmethionine and S-2-aminoethyl-L-cysteine on lysine 2-oxoglutarate reductase-saccharopine dehydrogenase bifunctional enzyme.",
abstract = "Lysine biosynthesis has been extensively studied and the regulatory enzymes characterized in some of the most important crop plants, however, much less is known about the lysine degradation pathway. Lysine 2-oxoglutarate reductase (LOR) and saccharopine dehydrogenase (SDH) have recently been partially purified and characterized from plants, and have been shown to exist as a single bifunctional polypeptide. We have further characterized these enzymes from rice endosperm in relation to Ca2+ and ionic strength modulation. Optimum pH values of 7.0 and 8.0 were obtained for LOR and SDH, respectively. The LOR domain of the polypeptide was modulated by Ca2+ and ionic strength, whereas the SDH domain was not. It would appear that the modulation by Ca2+ and ionic strength of LOR is a common feature among plant LOR enzymes. S-adenosylmethionine (SAM) did not produce any significant effect on either enzyme activity, indicating that it only plays a role in the regulation of lysine biosynthesis. The effect of S-2-aminoethyl- l-cysteine (AEC) as both a substrate and an inhibitor of LOR activity was also tested. AEC was shown to partially substitute for lysine as a substrate for LOR, but was also able to inhibit LOR activity, possibly competing with lysine at the active site. The higher Km for AEC compared to lysine may reflect a lower binding affinity for AEC.",
author = "Gaziola, {S. A.} and L. Sodek and P. Arruda and Lea, {P. J.} and Azevedo, {R. A.}",
year = "2000",
month = oct,
doi = "10.1034/j.1399-3054.2000.110204.x",
language = "English",
volume = "110",
pages = "164--171",
journal = "Physiologia Plantarum",
issn = "0031-9317",
publisher = "Blackwell-Wiley",
number = "2",

}

RIS

TY - JOUR

T1 - Degradation of lysine in rice seeds : effects of calcium, ionic strength, S-adenosylmethionine and S-2-aminoethyl-L-cysteine on lysine 2-oxoglutarate reductase-saccharopine dehydrogenase bifunctional enzyme.

AU - Gaziola, S. A.

AU - Sodek, L.

AU - Arruda, P.

AU - Lea, P. J.

AU - Azevedo, R. A.

PY - 2000/10

Y1 - 2000/10

N2 - Lysine biosynthesis has been extensively studied and the regulatory enzymes characterized in some of the most important crop plants, however, much less is known about the lysine degradation pathway. Lysine 2-oxoglutarate reductase (LOR) and saccharopine dehydrogenase (SDH) have recently been partially purified and characterized from plants, and have been shown to exist as a single bifunctional polypeptide. We have further characterized these enzymes from rice endosperm in relation to Ca2+ and ionic strength modulation. Optimum pH values of 7.0 and 8.0 were obtained for LOR and SDH, respectively. The LOR domain of the polypeptide was modulated by Ca2+ and ionic strength, whereas the SDH domain was not. It would appear that the modulation by Ca2+ and ionic strength of LOR is a common feature among plant LOR enzymes. S-adenosylmethionine (SAM) did not produce any significant effect on either enzyme activity, indicating that it only plays a role in the regulation of lysine biosynthesis. The effect of S-2-aminoethyl- l-cysteine (AEC) as both a substrate and an inhibitor of LOR activity was also tested. AEC was shown to partially substitute for lysine as a substrate for LOR, but was also able to inhibit LOR activity, possibly competing with lysine at the active site. The higher Km for AEC compared to lysine may reflect a lower binding affinity for AEC.

AB - Lysine biosynthesis has been extensively studied and the regulatory enzymes characterized in some of the most important crop plants, however, much less is known about the lysine degradation pathway. Lysine 2-oxoglutarate reductase (LOR) and saccharopine dehydrogenase (SDH) have recently been partially purified and characterized from plants, and have been shown to exist as a single bifunctional polypeptide. We have further characterized these enzymes from rice endosperm in relation to Ca2+ and ionic strength modulation. Optimum pH values of 7.0 and 8.0 were obtained for LOR and SDH, respectively. The LOR domain of the polypeptide was modulated by Ca2+ and ionic strength, whereas the SDH domain was not. It would appear that the modulation by Ca2+ and ionic strength of LOR is a common feature among plant LOR enzymes. S-adenosylmethionine (SAM) did not produce any significant effect on either enzyme activity, indicating that it only plays a role in the regulation of lysine biosynthesis. The effect of S-2-aminoethyl- l-cysteine (AEC) as both a substrate and an inhibitor of LOR activity was also tested. AEC was shown to partially substitute for lysine as a substrate for LOR, but was also able to inhibit LOR activity, possibly competing with lysine at the active site. The higher Km for AEC compared to lysine may reflect a lower binding affinity for AEC.

U2 - 10.1034/j.1399-3054.2000.110204.x

DO - 10.1034/j.1399-3054.2000.110204.x

M3 - Journal article

VL - 110

SP - 164

EP - 171

JO - Physiologia Plantarum

JF - Physiologia Plantarum

SN - 0031-9317

IS - 2

ER -