Home > Research > Publications & Outputs > Demand forecasting with user-generated online i...

Electronic data

  • IJF_Demand_forecasting_with_user-generated_online_information

    Rights statement: This is the author’s version of a work that was accepted for publication in International Journal of Forecasting. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International Journal of Forecasting, 35,1,2019 DOI: 10.1016/j.ijforecast.2018.03.005

    Accepted author manuscript, 333 KB, PDF-document

    Embargo ends: 6/06/20

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

Demand forecasting with user-generated online information

Research output: Contribution to journalJournal article

Published

Standard

Demand forecasting with user-generated online information. / Schaer, Oliver; Kourentzes, Nikolaos; Fildes, Robert Alan.

In: International Journal of Forecasting, Vol. 35, No. 1, 01.2019, p. 197-212.

Research output: Contribution to journalJournal article

Harvard

APA

Vancouver

Author

Schaer, Oliver ; Kourentzes, Nikolaos ; Fildes, Robert Alan. / Demand forecasting with user-generated online information. In: International Journal of Forecasting. 2019 ; Vol. 35, No. 1. pp. 197-212.

Bibtex

@article{3ca129394ace4609a9f9747923c11281,
title = "Demand forecasting with user-generated online information",
abstract = "Recently, there has been substantial research on the augmentation of aggregate forecasts with individual consumer data from internet platforms, such as search traffic or social network shares. Although the majority of studies have reported increases in accuracy, many exhibit design weaknesses, including a lack of adequate benchmarks or rigorous evaluation. Furthermore, their usefulness over the product life-cycle has not been investigated, even though this may change, as consumers may search initially for pre-purchase information, but later for after-sales support. This study begins by reviewing the relevant literature, then attempts to support the key findings using two forecasting case studies. Our findings are in stark contrast to those in the previous literature, as we find that established univariate forecasting benchmarks, such as exponential smoothing, consistently perform better those that include online information. Our research underlines the need for a thorough forecast evaluation and argues that the usefulness of online platform data for supporting operational decisions may be limited.",
keywords = "Electronic word-of-mouth, Google trends, Leading indicators, Product life-cycle, Search traffic, Social media",
author = "Oliver Schaer and Nikolaos Kourentzes and Fildes, {Robert Alan}",
note = "This is the author’s version of a work that was accepted for publication in International Journal of Forecasting. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International Journal of Forecasting, 35,1,2019 DOI: 10.1016/j.ijforecast.2018.03.005",
year = "2019",
month = "1",
doi = "10.1016/j.ijforecast.2018.03.005",
language = "English",
volume = "35",
pages = "197--212",
journal = "International Journal of Forecasting",
issn = "0169-2070",
publisher = "Elsevier Science B.V.",
number = "1",

}

RIS

TY - JOUR

T1 - Demand forecasting with user-generated online information

AU - Schaer, Oliver

AU - Kourentzes, Nikolaos

AU - Fildes, Robert Alan

N1 - This is the author’s version of a work that was accepted for publication in International Journal of Forecasting. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in International Journal of Forecasting, 35,1,2019 DOI: 10.1016/j.ijforecast.2018.03.005

PY - 2019/1

Y1 - 2019/1

N2 - Recently, there has been substantial research on the augmentation of aggregate forecasts with individual consumer data from internet platforms, such as search traffic or social network shares. Although the majority of studies have reported increases in accuracy, many exhibit design weaknesses, including a lack of adequate benchmarks or rigorous evaluation. Furthermore, their usefulness over the product life-cycle has not been investigated, even though this may change, as consumers may search initially for pre-purchase information, but later for after-sales support. This study begins by reviewing the relevant literature, then attempts to support the key findings using two forecasting case studies. Our findings are in stark contrast to those in the previous literature, as we find that established univariate forecasting benchmarks, such as exponential smoothing, consistently perform better those that include online information. Our research underlines the need for a thorough forecast evaluation and argues that the usefulness of online platform data for supporting operational decisions may be limited.

AB - Recently, there has been substantial research on the augmentation of aggregate forecasts with individual consumer data from internet platforms, such as search traffic or social network shares. Although the majority of studies have reported increases in accuracy, many exhibit design weaknesses, including a lack of adequate benchmarks or rigorous evaluation. Furthermore, their usefulness over the product life-cycle has not been investigated, even though this may change, as consumers may search initially for pre-purchase information, but later for after-sales support. This study begins by reviewing the relevant literature, then attempts to support the key findings using two forecasting case studies. Our findings are in stark contrast to those in the previous literature, as we find that established univariate forecasting benchmarks, such as exponential smoothing, consistently perform better those that include online information. Our research underlines the need for a thorough forecast evaluation and argues that the usefulness of online platform data for supporting operational decisions may be limited.

KW - Electronic word-of-mouth

KW - Google trends

KW - Leading indicators

KW - Product life-cycle

KW - Search traffic

KW - Social media

U2 - 10.1016/j.ijforecast.2018.03.005

DO - 10.1016/j.ijforecast.2018.03.005

M3 - Journal article

VL - 35

SP - 197

EP - 212

JO - International Journal of Forecasting

JF - International Journal of Forecasting

SN - 0169-2070

IS - 1

ER -