12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Density-based averaging - a new operator for da...
View graph of relations

« Back

Density-based averaging - a new operator for data fusion

Research output: Contribution to journalJournal article

Published

Journal publication date10/02/2013
JournalInformation Sciences
Volume222
Number of pages12
Pages163-174
Early online date7/09/12
Original languageEnglish

Abstract

A new data fusion operator based on averaging that is weighted by the density of each particular data sample is introduced in this paper. The proposed approach differs from other weighted averages by its suitability to on-line, real-time applications due to the fact that recursive calculations are being used. It also
differs by the fact that it is non-parametric. The proposed operator has a very wide area of possible applications same as the traditional average and most of the other weighted averages. This includes, but is not limited to clustering, classification, pattern recognition, group decision making approaches, data
fusion, etc. Some illustrative numerical examples are provided mainly as a proof of concept, including its application to classification. Two simple, yet very effective classification approaches based on the density-based weights called ‘one-rule-per-class’ or 1R/C and on the minimum distance to weighted class mean has been introduced. Further work will focus on more application-oriented studies that cover various practical applications to clustering and use of different distance measures.