Home > Research > Publications & Outputs > Describing complex cells in primary visual cortex

Associated organisational unit

Links

Text available via DOI:

View graph of relations

Describing complex cells in primary visual cortex: a comparison of context and multi-filter LN models

Research output: Contribution to journalJournal article

Published
<mark>Journal publication date</mark>08/2018
<mark>Journal</mark>Journal of Neurophysiology
Issue number2
Volume120
Number of pages17
Pages (from-to)703-719
Publication statusPublished
Early online date2/05/18
Original languageEnglish

Abstract

Receptive field (RF) models are an important tool for deciphering neural responses to sensory stimuli. The two currently popular RF models are multi-filter linear-nonlinear (LN) models and context models. Models are, however, never correct and they rely on assumptions to keep them simple enough to be interpretable. As a consequence, different models describe different stimulus-response mappings, which may or may not be good approximations of real neural behavior. In the current study, we take up two tasks: First, we introduce new ways to estimate context models with realistic nonlinearities, that is, with logistic and exponential functions. Second, we evaluate context models and multi-filter LN models in terms of how well they describe recorded data from complex cells in cat primary visual cortex. Our results, based on single-spike information and correlation coefficients, indicate that context models outperform corresponding multi-filter LN models of equal complexity (measured in terms of number of parameters), with the best increase in performance being achieved by the novel context models. Consequently, our results suggest that the multi-filter LN-model framework is suboptimal for describing the behavior of complex cells: the context-model framework is clearly superior while still providing interpretable quantizations of neural behavior.