We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK


97% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Design considerations of microcavity ring reson...
View graph of relations

« Back

Design considerations of microcavity ring resonators

Research output: Contribution to journalJournal article


<mark>Journal publication date</mark>08/2011
<mark>Journal</mark>IET Optoelectronics
Number of pages7
<mark>Original language</mark>English


This study presents an accurate numerical analysis of a microcavity ring resonator based on high-index-contrast waveguide. The analysis is carried out using a multiresolution time domain (MRTD) scheme that provides high numerical precision without the strict limitation on the space discretisation as compared to the commonly used finite-difference time domain (FDTD). By relying on higher-order approximation of discretisation in space, the proposed MRTD approach outperforms the FDTD method and is thus a more suitable candidate for large-scale simulations. The uniaxial perfectly matched layer is carefully applied to truncate the computational domain. The analysed parameters are the coupling coefficients between the input/output waveguides and the ring, the resonance frequencies and the free spectral range. The effect of the structure geometry parameters such as the gap between the ring and input/output waveguides, the ring radius and the width of the input/output waveguide and the ring resonator is thoroughly investigated. The numerical results reveal that the suggested MRTD allows using about twice the spatial step size required by FDTD yet providing same level of accuracy.