Home > Research > Publications & Outputs > Determination of jet calibration and energy res...

Links

Text available via DOI:

View graph of relations

Determination of jet calibration and energy resolution in proton–proton collisions at √s=8TeV using the ATLAS detector

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
Article number1104
<mark>Journal publication date</mark>1/12/2020
<mark>Journal</mark>European Physical Journal C: Particles and Fields
Issue number12
Volume80
Number of pages81
Publication StatusPublished
<mark>Original language</mark>English

Abstract

The jet energy scale, jet energy resolution, and their systematic uncertainties are measured for jets reconstructed with the ATLAS detector in 2012 using proton–proton data produced at a centre-of-mass energy of 8 TeV with an integrated luminosity of 20fb−1. Jets are reconstructed from clusters of energy depositions in the ATLAS calorimeters using the anti-kt algorithm. A jet calibration scheme is applied in multiple steps, each addressing specific effects including mitigation of contributions from additional proton–proton collisions, loss of energy in dead material, calorimeter non-compensation, angular biases and other global jet effects. The final calibration step uses several in situ techniques and corrects for residual effects not captured by the initial calibration. These analyses measure both the jet energy scale and resolution by exploiting the transverse momentum balance in γ + jet, Z + jet, dijet, and multijet events. A statistical combination of these measurements is performed. In the central detector region, the derived calibration has a precision better than 1% for jets with transverse momentum 150GeV<pT< 1500 GeV, and the relative energy resolution is (8.4±0.6)% for pT=100GeV and (23±2)% for pT=20GeV. The calibration scheme for jets with radius parameter R=1.0, for which jets receive a dedicated calibration of the jet mass, is also discussed.