12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Development of turbulance in subsonic submerged...
View graph of relations

« Back

Development of turbulance in subsonic submerged jets

Research output: Contribution to journalJournal article

Published

Journal publication date06/2004
JournalPhysics Reports
Journal number1
Volume397
Number of pages62
Pages1-62
Original languageEnglish

Abstract

The development of turbulence in subsonic submerged jets is reviewed. It is shown that the turbulence results from a strong amplification of the weak input noise that is always present in the jet nozzle exit section. At a certain distance from the nozzle the amplification becomes essentially nonlinear. This amplified noise leads to a transition of the system to a qualitatively new state, which depends only slightly on the characteristics of the input noise, such as its power spectrum. Such a transition has much in common with nonequilibrium noise-induced phase transitions in nonlinear oscillators with multiplicative and additive noise. The Krylov–Bogolyubov method for spatially extended systems is used to trace the evolution of the power spectra, the root-mean-square amplitude of the turbulent pulsations, and the mean velocity, with increasing distance from the nozzle. It is shown that, as turbulence develops, its longitudinal and transverse scales increase. The results coincide qualitatively and also, in specific cases, quantitatively, with known experimental data.