Home > Research > Publications & Outputs > Development of turbulance in subsonic submerged...

Electronic data

  • Development of turbulance in subsonic submerged...

    Rights statement: This is the author’s version of a work that was accepted for publication in Physics Reports. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Physics Reports, 397, 1, 2004 DOI: 10.1016/j.physrep.2004.03.004

    Accepted author manuscript, 811 KB, PDF-document

    Date added: 23/04/15

Text available via DOI:

View graph of relations

Development of turbulance in subsonic submerged jets

Research output: Contribution to journalJournal article

Published
<mark>Journal publication date</mark>06/2004
<mark>Journal</mark>Physics Reports
Issue number1
Volume397
Number of pages62
Pages (from-to)1-62
<mark>State</mark>Published
<mark>Original language</mark>English

Abstract

The development of turbulence in subsonic submerged jets is reviewed. It is shown that the turbulence results from a strong amplification of the weak input noise that is always present in the jet nozzle exit section. At a certain distance from the nozzle the amplification becomes essentially nonlinear. This amplified noise leads to a transition of the system to a qualitatively new state, which depends only slightly on the characteristics of the input noise, such as its power spectrum. Such a transition has much in common with nonequilibrium noise-induced phase transitions in nonlinear oscillators with multiplicative and additive noise. The Krylov–Bogolyubov method for spatially extended systems is used to trace the evolution of the power spectra, the root-mean-square amplitude of the turbulent pulsations, and the mean velocity, with increasing distance from the nozzle. It is shown that, as turbulence develops, its longitudinal and transverse scales increase. The results coincide qualitatively and also, in specific cases, quantitatively, with known experimental data.

Bibliographic note

This is the author’s version of a work that was accepted for publication in Physics Reports. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Physics Reports, 397, 1, 2004 DOI: 10.1016/j.physrep.2004.03.004