Home > Research > Publications & Outputs > Digital processing of signals arising from orga...
View graph of relations

Digital processing of signals arising from organic liquid scintillators for applications in the mixed-field assessment of nuclear threats.

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
Article number 71190G
<mark>Journal publication date</mark>10/2008
<mark>Journal</mark>Proceedings of SPIE
Volume7119
Publication StatusPublished
<mark>Original language</mark>English

Abstract

The nuclear aspect of the CBRN* threat is often divided amongst radiological substances posing no criticality risk, often referred to as 'dirty bomb' scenarios, and fissile threats. The latter have the theoretical potential for criticality excursion, resulting in elevated neutron fluxes in addition to the γ-ray component that is common to dirty bombs. Even in isolation of the highly-unlikely criticality scenario, fissile substances often exhibit radiation fields comprising a significant neutron component which can require considerably different counterterrorism measures and clean-up methodologies. The contrast between these threats can indicate important differences in the relative sophistication of the perpetrators and their organizations. Consequently, the detection and discrimination of nuclear perils in terms of mixed-field content is an important assay in combating terrorist threats. In this paper we report on the design and implementation of a fast digitizer and embedded-processor for onthe- fly signal processing of events from organic liquid scintillators. A digital technique, known as Pulse Gradient Analysis (PGA), has been developed at Lancaster University for the digital discrimination of neutrons and γ rays. PGA has been deployed on bespoke hardware and demonstrates remarkable improvement over analogue methods for the assay of mixed fields and the real-time discrimination of neutrons and γ rays. In this regard the technology constitutes an attractive and affordable means for the discrimination of the radiation fields arising from fissile threats and those from dirty bombs. Data are presented demonstrating this capability with sealed radioactive sources.

Bibliographic note

Conference Date: Monday 15 September 2008 Conference Location: Cardiff, Wales, United Kingdom Conference Title: Optics and Photonics for Counterterrorism and Crime Fighting IV