Home > Research > Publications & Outputs > Discharge and water table predictions using a g...
View graph of relations

Discharge and water table predictions using a generalized TOPMODEL formulation

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
<mark>Journal publication date</mark>07/1997
<mark>Journal</mark>Hydrological Processes
Issue number9
Volume11
Number of pages23
Pages (from-to)1145-1167
Publication StatusPublished
<mark>Original language</mark>English

Abstract

A simple, generalized saturated zone formulation is presented in this paper to relax the assumption of an exponential function originally made in TOPMODEL. This saturated zone model is based on the concept of a 'discharge : relative storage' (Q Delta S) function which is derived empirically, using recession curve analysis, and may be of arbitrary form. The generalized formulation is applied to the Seternbekken MINIFELT catchment in Norway, where detailed distributed water table data have been measured. These water table data are used to suggest an empirical, power law modification of the topographic a/tan beta index. Results for the simulation through time of discharges and water table depths at a few locations show that the generalized saturated zone formulation is as efficient a simulator of the observed data as a conventional TOPMODEL, but requires one parameter less to be calibrated. The simulation of detailed water table distributions is only approximate in both cases. The modified power law index shows only a small improvement but provides a basis for a discussion of possible sources of error in the TOPMODEL assumptions for this site. (C) 1997 by John Wiley & Sons, Ltd.