Home > Research > Publications & Outputs > Dynamics of the 2004 avian influenza H5N1 outbr...

Associated organisational unit

Links

Text available via DOI:

View graph of relations

Dynamics of the 2004 avian influenza H5N1 outbreak in Thailand: The role of duck farming, sequential model fitting and control

Research output: Contribution to journalJournal article

Published

Standard

Dynamics of the 2004 avian influenza H5N1 outbreak in Thailand : The role of duck farming, sequential model fitting and control. / Retkute, R.; Jewell, C.P.; Van Boeckel, T.P.; Zhang, G.; Xiao, X.; Thanapongtharm, W.; Keeling, M.; Gilbert, M.; Tildesley, M.J.

In: Preventive Veterinary Medicine, Vol. 159, 01.11.2018, p. 171-181.

Research output: Contribution to journalJournal article

Harvard

Retkute, R, Jewell, CP, Van Boeckel, TP, Zhang, G, Xiao, X, Thanapongtharm, W, Keeling, M, Gilbert, M & Tildesley, MJ 2018, 'Dynamics of the 2004 avian influenza H5N1 outbreak in Thailand: The role of duck farming, sequential model fitting and control', Preventive Veterinary Medicine, vol. 159, pp. 171-181. https://doi.org/10.1016/j.prevetmed.2018.09.014

APA

Retkute, R., Jewell, C. P., Van Boeckel, T. P., Zhang, G., Xiao, X., Thanapongtharm, W., Keeling, M., Gilbert, M., & Tildesley, M. J. (2018). Dynamics of the 2004 avian influenza H5N1 outbreak in Thailand: The role of duck farming, sequential model fitting and control. Preventive Veterinary Medicine, 159, 171-181. https://doi.org/10.1016/j.prevetmed.2018.09.014

Vancouver

Retkute R, Jewell CP, Van Boeckel TP, Zhang G, Xiao X, Thanapongtharm W et al. Dynamics of the 2004 avian influenza H5N1 outbreak in Thailand: The role of duck farming, sequential model fitting and control. Preventive Veterinary Medicine. 2018 Nov 1;159:171-181. https://doi.org/10.1016/j.prevetmed.2018.09.014

Author

Retkute, R. ; Jewell, C.P. ; Van Boeckel, T.P. ; Zhang, G. ; Xiao, X. ; Thanapongtharm, W. ; Keeling, M. ; Gilbert, M. ; Tildesley, M.J. / Dynamics of the 2004 avian influenza H5N1 outbreak in Thailand : The role of duck farming, sequential model fitting and control. In: Preventive Veterinary Medicine. 2018 ; Vol. 159. pp. 171-181.

Bibtex

@article{1057ce97c59d4909a24c8bd9c6954d13,
title = "Dynamics of the 2004 avian influenza H5N1 outbreak in Thailand: The role of duck farming, sequential model fitting and control",
abstract = "The Highly Pathogenic Avian Influenza (HPAI) subtype H5N1 virus persists in many countries and has been circulating in poultry, wild birds. In addition, the virus has emerged in other species and frequent zoonotic spillover events indicate that there remains a significant risk to human health. It is crucial to understand the dynamics of the disease in the poultry industry to develop a more comprehensive knowledge of the risks of transmission and to establish a better distribution of resources when implementing control. In this paper, we develop a set of mathematical models that simulate the spread of HPAI H5N1 in the poultry industry in Thailand, utilising data from the 2004 epidemic. The model that incorporates the intensity of duck farming when assessing transmision risk provides the best fit to the spatiotemporal characteristics of the observed outbreak, implying that intensive duck farming drives transmission of HPAI in Thailand. We also extend our models using a sequential model fitting approach to explore the ability of the models to be used in “real time” during novel disease outbreaks. We conclude that, whilst predictions of epidemic size are estimated poorly in the early stages of disease outbreaks, the model can infer the preferred control policy that should be deployed to minimise the impact of the disease. {\textcopyright} 2018 The Authors",
keywords = "Avian influenza, Disease control, Spatial heterogeneity, Vaccination, Article, duck, dynamics, epidemic, influenza A (H5N1), Influenza A virus (H5N1), mathematical model, nonhuman, poultry farming, priority journal, Thailand, virus transmission",
author = "R. Retkute and C.P. Jewell and {Van Boeckel}, T.P. and G. Zhang and X. Xiao and W. Thanapongtharm and M. Keeling and M. Gilbert and M.J. Tildesley",
note = "Export Date: 6 December 2018 CODEN: PVMEE Correspondence Address: Retkute, R.; School of Life Sciences and Institute of Mathematics, University of WarwickUnited Kingdom; email: r.retkute@warwick.ac.uk Funding details: National Institutes of Health, NIH Funding details: National Institutes of Health, NIH, 1R01AI101028-02A1 Funding details: Biotechnology and Biological Sciences Research Council, BBSRC, BB/K010972/4 Funding details: Biotechnology and Biological Sciences Research Council, BBSRC, EP/P511079/1 Funding text 1: MJT and RR are supported by the Engineering and Physical Sciences Research Council and the Biotechnology and Biological Sciences Research Council [Grant Numbers EP/P511079/1 and BB/K010972/4]. XX, MG and MJT are supported by the National Institutes of Health (NIH Grant 1R01AI101028-02A1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. References: Amonsin, A., Choatralkol, C., Lapkuntod, J., Tantilertcharoen, R., Thanawongnuwech, R., Suradhat, S., Suwannakarn, K., Poovorawan, Y., Influenza virus (H5N1) in live bird markets and food markets, Thailand (2008) Emerg. Infect. Dis., 14 (11), pp. 1739-1742; Artois, J., Lai, S., Feng, L., Jiang, H., Zhou, H., Li, X., Dhingra, M.S., Gilbert, M., H7N9 and H5N1 avian influenza suitability models for China: accounting for new poultry and live-poultry markets distribution data (2017) Stochast. Environ. Res. Risk Assess., 31 (2), pp. 393-402; Auewarakul, P., The past and present threat of avian influenza in Thailand (2008) Emerging Infections in Asia, pp. 31-44. , Y. Lu M. Essex B. Roberts Springer; Boender, G.J., Hagenaars, T.J., Bouma, A., Nodelijk, G., Elbers, A.R.W., de Jong, M.C.M., van Boven, M., Risk maps for the spread of highly pathogenic avian influenza in poultry (2007) PLoS Comput. Biol., 3 (4), pp. 704-712; Buhnerkempe, M.G., Tildesley, M.J., Lindstrom, T., Grear, D.A., Portacci, K., Miller, R.S., Lombard, J.E., Webb, C.T., The impact of movements and animal density on continental scale cattle disease outbreaks in the United States (2014) PLOS ONE, 9 (3); de Bruin, E., Zhang, X., Ke, C., Sikkema, R., Koopmans, M., Serological evidence for exposure to avian influenza viruses within poultry workers in southern China (2017) Zoonoses Public Health, 64 (7), pp. e51-e59; EFSA, Scientific Opinion on Vaccination against avian influenza of H5 and H7 subtypes in domestic poultry and captive birds (2007) EFSA J., 489; Gilbert, M., Xiao, X., Chaitaweesub, P., Kalpravidh, W., Premashthira, S., Boles, S., Slingenbergh, J., Avian influenza, domestic ducks and rice agriculture in Thailand (2007) Agric. Ecosyst. Environ., 119 (3-4), pp. 409-415; Gilbert, M., Xiao, X., Pfeiffer, D.U., Epprecht, M., Boles, S., Czarnecki, C., Chaitaweesub, P., Slingenbergh, J., Mapping H5N1 highly pathogenic avian influenza risk in Southeast Asia (2008) PNAS, 105 (12), pp. 4769-4774; Gilbert, M., Chaitaweesub, P., Parakarnawongsa, T., Premashthira, S., Tiensin, T., Kalpravidh, W., Wagner, H., Slingenbergh, J., Free-grazing ducks and highly pathogenic avian influenza, Thailand (2006) Emerg. Infect. Dis., 12 (2), pp. 227-234; Gilbert, M., Newman, S.H., Takekawa, J.Y., Loth, L., Biradar, C., Prosser, D.J., Balachandran, S., Xiao, X., Flying over an infected landscape: distribution of highly pathogenic avian influenza H5N1 risk in South Asia and satellite tracking of wild waterfowl (2010) EcoHealth, 7 (4), pp. 448-458; Gilbert, M., Golding, N., Zhou, H., Wint, G.R.W., Robinson, T.P., Tatem, A.J., Lai, S., Yu, H., Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia (2014) Nat. Commun., 5; Hill, E.M., House, T., Dhingra, M.S., Kalpravidh, W., Morzaria, S., Osmani, M.G., Yamage, M., Tildesley, M.J., Modelling H5N1 in Bangladesh across spatial scales: model complexity and zoonotic transmission risk (2017) Epidemics, 20, pp. 37-55; Hill, E.M., House, T., Dhingra, M.S., Kalpravidh, W., Morzaria, S., Osmani, M.G., Brum, E., Tildesley, M.J., The impact of surveillance and control on highly pathogenic avian influenza outbreaks in poultry in Dhaka division, Bangladesh (2018) PLoS Comput. Biol.; Jairak, W., Boonyapisitsopa, S., Chaiyawong, S., Nonthabenjawan, N., Tangwangvivat, R., Bunpapong, N., Amonsin, A., Genetic characterization of influenza A (H7N6) virus isolated from a live-bird market in Thailand (2016) Arch. Virol, 161 (5), pp. 1315-1322; Jeong, O.-M., Kim, M.-C., Kim, M.-J., Kang, H.-M., Kim, H.-R., Kim, Y.-J., Joh, S.-J., Lee, Y.-J., Experimental infection of chickens, ducks and quails with the highly pathogenic H5N1 avian influenza virus (2009) J. Vet. Sci., 10 (1), pp. 53-60; Jewell, C.P., Keeling, M.J., Roberts, G.O., Predicting undetected infections during the 2007 foot-and-mouth disease outbreak (2009) J. R. Soc. Interface, 6 (41), pp. 1145-1151; Jewell, C.P., Kypraios, T., Christley, R.M., Roberts, G., A novel approach to real-time risk prediction for emerging infectious diseases: a case study in Avian Influenza H5N1 (2009) Prev. Vet. Med., 91 (1), pp. 19-28; Jewell, C.P., Kypraios, T., Neal, P., Roberts, G.O., Bayesian analysis for emerging infectious diseases (2009) Bayesian Anal., 3, pp. 465-496; Meuwissen, M., Horst, S., Huirne, R., Dijkhuizen, A., A model to estimate the financial consequences of classical swine fever outbreaks: principles and outcomes (1999) Prev. Vet. Med., 42 (3-4), pp. 249-270; Minh, P., Stevenson, M., Jewell, C., French, N., Schauer, B., Spatio-temporal analyses of highly pathogenic avian influenza H5N1 outbreaks in the Mekong River Delta, Vietnam, 2009 (2011) Spatial Spatio-temporal Epidemiol., 2, pp. 49-57; Paul, M., Tavornpanich, S., Abrial, D., Gasqui, P., Charras-Garrido, M., Thanapongtharm, W., Xiao, X., Ducrot, C., Anthropogenic factors and the risk of highly pathogenic avian influenza H5N1: prospects from a spatial-based model (2010) Vet. Res., 41 (3); Paul, M.C., Gilbert, M., Desvaux, S., Andriamanivo, H.R., Peyre, M., Khong, N.V., Thanapongtharm, W., Chevalier, V., Agro-environmental determinants of avian influenza circulation: a multisite study in Thailand, Vietnam and Madagascar (2014) PLOS ONE, 9 (7); Paul, M.C., Goutard, F.L., Roulleau, F., Holl, D., Thanapongtharm, W., Roger, F.L., Tran, A., Quantitative assessment of a spatial multicriteria model for highly pathogenic avian influenza H5N1 in Thailand, and application in Cambodia (2016) Sci. Rep., 6; Peiris, J.S.M., de Jong, M.D., Guan, Y., Avian influenza virus (H5N1): a threat to human health (2007) Clin. Microbiol. Rev., 20 (2), p. 243; Probert, W., Shea, K., Fonnesbeck, C., Runge, C., Carpenter, T., Durf, S., Garner, M., Ferrari, M., Decision-making for foot-and-mouth disease control: objectives matter (2016) Epidemics, 15, pp. 10-19; Probert, W., Jewell, C., Werkman, M., Fonnesbeck, C., Goto, Y., Runge, M., Sekiguchi, S., Tildesley, M., Real-time decision-making during emergency disease outbreaks (2018) PLOS Comput. Biol., 14 (7), p. e1006202; Qiao, C., Yu, K., Jiang, Y., Jia, Y., Tian, G., Liu, M., Deng, G., Tang, X., Protection of chickens against highly lethal H5N1 and H7N1 avian influenza viruses with a recombinant fowlpox virus co-expressing H5 haemagglutinin and N1 neuraminidase genes (2003) Avian Pathol., 32 (1), pp. 25-31; Sharkey, K.J., Bowers, R.G., Morgan, K.L., Robinson, S.E., Christley, R.M., Epidemiological consequences of an incursion of highly pathogenic H5N1 avian influenza into the British poultry flock (2008) Proc. R. Soc. B, 275 (1630), pp. 19-28; Spiegelhalter, D., Best, N., Carlin, B., van der Linde, A., Bayesian measures of model complexity and fit (2002) J. R. Stat. Soc.: Ser. B, 64 (4), pp. 583-616; Ssematimba, A., Hagenaars, T.J., de Jong, M.C.M., Modelling the wind-borne spread of highly pathogenic avian influenza virus between farms (2012) PLOS ONE, 7 (2); Stegeman, J.A., Bouma, A., de Jong, M.C.M., Epidemiological models to assist the management of highly pathogenic avian influenza (2011) Rev. Sci. Tech. Int. Off. Epizoot., 30 (2), pp. 571-579; Tantawiwattananon, N., Chiangson, T., Rattanavibul, K., Sakdajiwajaroen, V., Iamsirithaworn, S., Suanngam, L., Sonthisirikrit, S., Padungtod, P., Surveillance in 2013 of avian influenza virus from live-bird markets in Bangkok, Thailand (2017) Southeast Asian J. Trop. Med. Public Health, 48 (1), pp. 37-44; Tiensin, T., Chaitaweesub, P., Songserm, T., Chaisingh, A., Hoonsuwan, W., Buranathai, C., Parakamawongsa, T., Stegeman, A., Highly pathogenic avian influenza H5N1, Thailand, 2004 (2005) Emerg. Infect. Dis., 1 (11), pp. 1664-1672; Tiensin, T., Nielen, M., Songserm, T., Kalpravidh, W., Chaitaweesub, P., Amonsin, A., Chotiprasatintara, S., Stegeman, J.A., Geographic and temporal distribution of highly pathogenic avian influenza A virus (H5N1) in Thailand, 2004–2005: an overview (2007) Avian Dis., 51 (1), pp. 182-188; Tiensin, T., Nielen, M., Vernooij, H., Songserm, T., Kalpravidh, W., Chotiprasatintara, S., Chaisingh, A., Stegeman, A., Transmission of the highly pathogenic avian influenza virus H5N1 within flocks during the 2004 epidemic in Thailand (2007) J. Infect. Dis., 196 (11), pp. 1679-1684; Tiensin, T., Ahmed, S.S.U., Rojanasthien, S., Songserm, T., Ratanakorn, P., Chaichoun, K., Kalpravidh, W., Nielen, M., Ecologic risk factor investigation of clusters of avian influenza A (H5N1) virus infection in Thailand (2009) J. Infect. Dis., 199 (12), pp. 1735-1743; Truscott, J., Garske, T., Chis-Ster, I., Guitian, J., Pfeiffer, D., Snow, L., Wilesmith, J., Ghani, A.C., Control of a highly pathogenic H5N1 avian influenza outbreak in the GB poultry flock (2007) Proc. R. Soc. B, 274 (1623), pp. 2287-2295; van der Goot, J.A., van Boven, M., Stegeman, A., de Water, S.G.P.V., de Jong, M.C.M., Koch, G., Transmission of highly pathogenic avian influenza H5N1 virus in Pekin ducks is significantly reduced by a genetically distant H5N2 vaccine (2008) Virology, 382 (1), pp. 91-97; Walker, P., Cauchemez, S., Hartemink, N., Tiensin, T., Ghani, A.C., Outbreaks of h5n1 in poultry in Thailand: the relative role of poultry production types in sustaining transmission and the impact of active surveillance in control (2012) J. R. Soc. Interface, 9 (73), pp. 1836-1845; Wisedchanwet, T., Wongpatcharachai, M., Boonyapisitsopa, S., Bunpapong, N., Jairak, W., Kitikoon, P., Sasipreeyajun, J., Amonsin, A., Influenza A virus surveillance in live-bird markets: first report of influenza A virus subtype H4N6, H4N9, and H10N3 in Thailand (2011) Avian Dis., 55 (4), pp. 593-602; Xiao, X., Boles, S., Frolking, S., Li, C., Babu, J., Salas, W., Moore, B., Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images (2006) Remote Sens. Environ., 100 (1), pp. 95-113; Yu, Z., Song, Y., Zhou, H., Xu, X., Hu, Q., Wu, H., Zhang, A., Jin, M., Avian influenza (H5N1) virus in waterfowl and chickens, central China (2007) Emerg. Infect. Dis., 13 (5), pp. 772-775",
year = "2018",
month = nov
day = "1",
doi = "10.1016/j.prevetmed.2018.09.014",
language = "English",
volume = "159",
pages = "171--181",
journal = "Preventive Veterinary Medicine",
issn = "0167-5877",
publisher = "Elsevier Science B.V.",

}

RIS

TY - JOUR

T1 - Dynamics of the 2004 avian influenza H5N1 outbreak in Thailand

T2 - The role of duck farming, sequential model fitting and control

AU - Retkute, R.

AU - Jewell, C.P.

AU - Van Boeckel, T.P.

AU - Zhang, G.

AU - Xiao, X.

AU - Thanapongtharm, W.

AU - Keeling, M.

AU - Gilbert, M.

AU - Tildesley, M.J.

N1 - Export Date: 6 December 2018 CODEN: PVMEE Correspondence Address: Retkute, R.; School of Life Sciences and Institute of Mathematics, University of WarwickUnited Kingdom; email: r.retkute@warwick.ac.uk Funding details: National Institutes of Health, NIH Funding details: National Institutes of Health, NIH, 1R01AI101028-02A1 Funding details: Biotechnology and Biological Sciences Research Council, BBSRC, BB/K010972/4 Funding details: Biotechnology and Biological Sciences Research Council, BBSRC, EP/P511079/1 Funding text 1: MJT and RR are supported by the Engineering and Physical Sciences Research Council and the Biotechnology and Biological Sciences Research Council [Grant Numbers EP/P511079/1 and BB/K010972/4]. XX, MG and MJT are supported by the National Institutes of Health (NIH Grant 1R01AI101028-02A1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. References: Amonsin, A., Choatralkol, C., Lapkuntod, J., Tantilertcharoen, R., Thanawongnuwech, R., Suradhat, S., Suwannakarn, K., Poovorawan, Y., Influenza virus (H5N1) in live bird markets and food markets, Thailand (2008) Emerg. Infect. Dis., 14 (11), pp. 1739-1742; Artois, J., Lai, S., Feng, L., Jiang, H., Zhou, H., Li, X., Dhingra, M.S., Gilbert, M., H7N9 and H5N1 avian influenza suitability models for China: accounting for new poultry and live-poultry markets distribution data (2017) Stochast. Environ. Res. Risk Assess., 31 (2), pp. 393-402; Auewarakul, P., The past and present threat of avian influenza in Thailand (2008) Emerging Infections in Asia, pp. 31-44. , Y. Lu M. Essex B. Roberts Springer; Boender, G.J., Hagenaars, T.J., Bouma, A., Nodelijk, G., Elbers, A.R.W., de Jong, M.C.M., van Boven, M., Risk maps for the spread of highly pathogenic avian influenza in poultry (2007) PLoS Comput. Biol., 3 (4), pp. 704-712; Buhnerkempe, M.G., Tildesley, M.J., Lindstrom, T., Grear, D.A., Portacci, K., Miller, R.S., Lombard, J.E., Webb, C.T., The impact of movements and animal density on continental scale cattle disease outbreaks in the United States (2014) PLOS ONE, 9 (3); de Bruin, E., Zhang, X., Ke, C., Sikkema, R., Koopmans, M., Serological evidence for exposure to avian influenza viruses within poultry workers in southern China (2017) Zoonoses Public Health, 64 (7), pp. e51-e59; EFSA, Scientific Opinion on Vaccination against avian influenza of H5 and H7 subtypes in domestic poultry and captive birds (2007) EFSA J., 489; Gilbert, M., Xiao, X., Chaitaweesub, P., Kalpravidh, W., Premashthira, S., Boles, S., Slingenbergh, J., Avian influenza, domestic ducks and rice agriculture in Thailand (2007) Agric. Ecosyst. Environ., 119 (3-4), pp. 409-415; Gilbert, M., Xiao, X., Pfeiffer, D.U., Epprecht, M., Boles, S., Czarnecki, C., Chaitaweesub, P., Slingenbergh, J., Mapping H5N1 highly pathogenic avian influenza risk in Southeast Asia (2008) PNAS, 105 (12), pp. 4769-4774; Gilbert, M., Chaitaweesub, P., Parakarnawongsa, T., Premashthira, S., Tiensin, T., Kalpravidh, W., Wagner, H., Slingenbergh, J., Free-grazing ducks and highly pathogenic avian influenza, Thailand (2006) Emerg. Infect. Dis., 12 (2), pp. 227-234; Gilbert, M., Newman, S.H., Takekawa, J.Y., Loth, L., Biradar, C., Prosser, D.J., Balachandran, S., Xiao, X., Flying over an infected landscape: distribution of highly pathogenic avian influenza H5N1 risk in South Asia and satellite tracking of wild waterfowl (2010) EcoHealth, 7 (4), pp. 448-458; Gilbert, M., Golding, N., Zhou, H., Wint, G.R.W., Robinson, T.P., Tatem, A.J., Lai, S., Yu, H., Predicting the risk of avian influenza A H7N9 infection in live-poultry markets across Asia (2014) Nat. Commun., 5; Hill, E.M., House, T., Dhingra, M.S., Kalpravidh, W., Morzaria, S., Osmani, M.G., Yamage, M., Tildesley, M.J., Modelling H5N1 in Bangladesh across spatial scales: model complexity and zoonotic transmission risk (2017) Epidemics, 20, pp. 37-55; Hill, E.M., House, T., Dhingra, M.S., Kalpravidh, W., Morzaria, S., Osmani, M.G., Brum, E., Tildesley, M.J., The impact of surveillance and control on highly pathogenic avian influenza outbreaks in poultry in Dhaka division, Bangladesh (2018) PLoS Comput. Biol.; Jairak, W., Boonyapisitsopa, S., Chaiyawong, S., Nonthabenjawan, N., Tangwangvivat, R., Bunpapong, N., Amonsin, A., Genetic characterization of influenza A (H7N6) virus isolated from a live-bird market in Thailand (2016) Arch. Virol, 161 (5), pp. 1315-1322; Jeong, O.-M., Kim, M.-C., Kim, M.-J., Kang, H.-M., Kim, H.-R., Kim, Y.-J., Joh, S.-J., Lee, Y.-J., Experimental infection of chickens, ducks and quails with the highly pathogenic H5N1 avian influenza virus (2009) J. Vet. Sci., 10 (1), pp. 53-60; Jewell, C.P., Keeling, M.J., Roberts, G.O., Predicting undetected infections during the 2007 foot-and-mouth disease outbreak (2009) J. R. Soc. Interface, 6 (41), pp. 1145-1151; Jewell, C.P., Kypraios, T., Christley, R.M., Roberts, G., A novel approach to real-time risk prediction for emerging infectious diseases: a case study in Avian Influenza H5N1 (2009) Prev. Vet. Med., 91 (1), pp. 19-28; Jewell, C.P., Kypraios, T., Neal, P., Roberts, G.O., Bayesian analysis for emerging infectious diseases (2009) Bayesian Anal., 3, pp. 465-496; Meuwissen, M., Horst, S., Huirne, R., Dijkhuizen, A., A model to estimate the financial consequences of classical swine fever outbreaks: principles and outcomes (1999) Prev. Vet. Med., 42 (3-4), pp. 249-270; Minh, P., Stevenson, M., Jewell, C., French, N., Schauer, B., Spatio-temporal analyses of highly pathogenic avian influenza H5N1 outbreaks in the Mekong River Delta, Vietnam, 2009 (2011) Spatial Spatio-temporal Epidemiol., 2, pp. 49-57; Paul, M., Tavornpanich, S., Abrial, D., Gasqui, P., Charras-Garrido, M., Thanapongtharm, W., Xiao, X., Ducrot, C., Anthropogenic factors and the risk of highly pathogenic avian influenza H5N1: prospects from a spatial-based model (2010) Vet. Res., 41 (3); Paul, M.C., Gilbert, M., Desvaux, S., Andriamanivo, H.R., Peyre, M., Khong, N.V., Thanapongtharm, W., Chevalier, V., Agro-environmental determinants of avian influenza circulation: a multisite study in Thailand, Vietnam and Madagascar (2014) PLOS ONE, 9 (7); Paul, M.C., Goutard, F.L., Roulleau, F., Holl, D., Thanapongtharm, W., Roger, F.L., Tran, A., Quantitative assessment of a spatial multicriteria model for highly pathogenic avian influenza H5N1 in Thailand, and application in Cambodia (2016) Sci. Rep., 6; Peiris, J.S.M., de Jong, M.D., Guan, Y., Avian influenza virus (H5N1): a threat to human health (2007) Clin. Microbiol. Rev., 20 (2), p. 243; Probert, W., Shea, K., Fonnesbeck, C., Runge, C., Carpenter, T., Durf, S., Garner, M., Ferrari, M., Decision-making for foot-and-mouth disease control: objectives matter (2016) Epidemics, 15, pp. 10-19; Probert, W., Jewell, C., Werkman, M., Fonnesbeck, C., Goto, Y., Runge, M., Sekiguchi, S., Tildesley, M., Real-time decision-making during emergency disease outbreaks (2018) PLOS Comput. Biol., 14 (7), p. e1006202; Qiao, C., Yu, K., Jiang, Y., Jia, Y., Tian, G., Liu, M., Deng, G., Tang, X., Protection of chickens against highly lethal H5N1 and H7N1 avian influenza viruses with a recombinant fowlpox virus co-expressing H5 haemagglutinin and N1 neuraminidase genes (2003) Avian Pathol., 32 (1), pp. 25-31; Sharkey, K.J., Bowers, R.G., Morgan, K.L., Robinson, S.E., Christley, R.M., Epidemiological consequences of an incursion of highly pathogenic H5N1 avian influenza into the British poultry flock (2008) Proc. R. Soc. B, 275 (1630), pp. 19-28; Spiegelhalter, D., Best, N., Carlin, B., van der Linde, A., Bayesian measures of model complexity and fit (2002) J. R. Stat. Soc.: Ser. B, 64 (4), pp. 583-616; Ssematimba, A., Hagenaars, T.J., de Jong, M.C.M., Modelling the wind-borne spread of highly pathogenic avian influenza virus between farms (2012) PLOS ONE, 7 (2); Stegeman, J.A., Bouma, A., de Jong, M.C.M., Epidemiological models to assist the management of highly pathogenic avian influenza (2011) Rev. Sci. Tech. Int. Off. Epizoot., 30 (2), pp. 571-579; Tantawiwattananon, N., Chiangson, T., Rattanavibul, K., Sakdajiwajaroen, V., Iamsirithaworn, S., Suanngam, L., Sonthisirikrit, S., Padungtod, P., Surveillance in 2013 of avian influenza virus from live-bird markets in Bangkok, Thailand (2017) Southeast Asian J. Trop. Med. Public Health, 48 (1), pp. 37-44; Tiensin, T., Chaitaweesub, P., Songserm, T., Chaisingh, A., Hoonsuwan, W., Buranathai, C., Parakamawongsa, T., Stegeman, A., Highly pathogenic avian influenza H5N1, Thailand, 2004 (2005) Emerg. Infect. Dis., 1 (11), pp. 1664-1672; Tiensin, T., Nielen, M., Songserm, T., Kalpravidh, W., Chaitaweesub, P., Amonsin, A., Chotiprasatintara, S., Stegeman, J.A., Geographic and temporal distribution of highly pathogenic avian influenza A virus (H5N1) in Thailand, 2004–2005: an overview (2007) Avian Dis., 51 (1), pp. 182-188; Tiensin, T., Nielen, M., Vernooij, H., Songserm, T., Kalpravidh, W., Chotiprasatintara, S., Chaisingh, A., Stegeman, A., Transmission of the highly pathogenic avian influenza virus H5N1 within flocks during the 2004 epidemic in Thailand (2007) J. Infect. Dis., 196 (11), pp. 1679-1684; Tiensin, T., Ahmed, S.S.U., Rojanasthien, S., Songserm, T., Ratanakorn, P., Chaichoun, K., Kalpravidh, W., Nielen, M., Ecologic risk factor investigation of clusters of avian influenza A (H5N1) virus infection in Thailand (2009) J. Infect. Dis., 199 (12), pp. 1735-1743; Truscott, J., Garske, T., Chis-Ster, I., Guitian, J., Pfeiffer, D., Snow, L., Wilesmith, J., Ghani, A.C., Control of a highly pathogenic H5N1 avian influenza outbreak in the GB poultry flock (2007) Proc. R. Soc. B, 274 (1623), pp. 2287-2295; van der Goot, J.A., van Boven, M., Stegeman, A., de Water, S.G.P.V., de Jong, M.C.M., Koch, G., Transmission of highly pathogenic avian influenza H5N1 virus in Pekin ducks is significantly reduced by a genetically distant H5N2 vaccine (2008) Virology, 382 (1), pp. 91-97; Walker, P., Cauchemez, S., Hartemink, N., Tiensin, T., Ghani, A.C., Outbreaks of h5n1 in poultry in Thailand: the relative role of poultry production types in sustaining transmission and the impact of active surveillance in control (2012) J. R. Soc. Interface, 9 (73), pp. 1836-1845; Wisedchanwet, T., Wongpatcharachai, M., Boonyapisitsopa, S., Bunpapong, N., Jairak, W., Kitikoon, P., Sasipreeyajun, J., Amonsin, A., Influenza A virus surveillance in live-bird markets: first report of influenza A virus subtype H4N6, H4N9, and H10N3 in Thailand (2011) Avian Dis., 55 (4), pp. 593-602; Xiao, X., Boles, S., Frolking, S., Li, C., Babu, J., Salas, W., Moore, B., Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images (2006) Remote Sens. Environ., 100 (1), pp. 95-113; Yu, Z., Song, Y., Zhou, H., Xu, X., Hu, Q., Wu, H., Zhang, A., Jin, M., Avian influenza (H5N1) virus in waterfowl and chickens, central China (2007) Emerg. Infect. Dis., 13 (5), pp. 772-775

PY - 2018/11/1

Y1 - 2018/11/1

N2 - The Highly Pathogenic Avian Influenza (HPAI) subtype H5N1 virus persists in many countries and has been circulating in poultry, wild birds. In addition, the virus has emerged in other species and frequent zoonotic spillover events indicate that there remains a significant risk to human health. It is crucial to understand the dynamics of the disease in the poultry industry to develop a more comprehensive knowledge of the risks of transmission and to establish a better distribution of resources when implementing control. In this paper, we develop a set of mathematical models that simulate the spread of HPAI H5N1 in the poultry industry in Thailand, utilising data from the 2004 epidemic. The model that incorporates the intensity of duck farming when assessing transmision risk provides the best fit to the spatiotemporal characteristics of the observed outbreak, implying that intensive duck farming drives transmission of HPAI in Thailand. We also extend our models using a sequential model fitting approach to explore the ability of the models to be used in “real time” during novel disease outbreaks. We conclude that, whilst predictions of epidemic size are estimated poorly in the early stages of disease outbreaks, the model can infer the preferred control policy that should be deployed to minimise the impact of the disease. © 2018 The Authors

AB - The Highly Pathogenic Avian Influenza (HPAI) subtype H5N1 virus persists in many countries and has been circulating in poultry, wild birds. In addition, the virus has emerged in other species and frequent zoonotic spillover events indicate that there remains a significant risk to human health. It is crucial to understand the dynamics of the disease in the poultry industry to develop a more comprehensive knowledge of the risks of transmission and to establish a better distribution of resources when implementing control. In this paper, we develop a set of mathematical models that simulate the spread of HPAI H5N1 in the poultry industry in Thailand, utilising data from the 2004 epidemic. The model that incorporates the intensity of duck farming when assessing transmision risk provides the best fit to the spatiotemporal characteristics of the observed outbreak, implying that intensive duck farming drives transmission of HPAI in Thailand. We also extend our models using a sequential model fitting approach to explore the ability of the models to be used in “real time” during novel disease outbreaks. We conclude that, whilst predictions of epidemic size are estimated poorly in the early stages of disease outbreaks, the model can infer the preferred control policy that should be deployed to minimise the impact of the disease. © 2018 The Authors

KW - Avian influenza

KW - Disease control

KW - Spatial heterogeneity

KW - Vaccination

KW - Article

KW - duck

KW - dynamics

KW - epidemic

KW - influenza A (H5N1)

KW - Influenza A virus (H5N1)

KW - mathematical model

KW - nonhuman

KW - poultry farming

KW - priority journal

KW - Thailand

KW - virus transmission

U2 - 10.1016/j.prevetmed.2018.09.014

DO - 10.1016/j.prevetmed.2018.09.014

M3 - Journal article

VL - 159

SP - 171

EP - 181

JO - Preventive Veterinary Medicine

JF - Preventive Veterinary Medicine

SN - 0167-5877

ER -