12,000

We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK

93%

93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Effects of climate-induced changes in isoprene ...
View graph of relations

« Back

Effects of climate-induced changes in isoprene emissions after the eruption of Mount Pinatubo

Research output: Contribution to journalJournal article

Published

  • P. J. Telford
  • Juliette Lathiere
  • N. L. Abraham
  • A. T. Archibald
  • P. Braesicke
  • C. E. Johnson
  • O. Morgenstern
  • F. M. O'Connor
  • R. C. Pike
  • Oliver Wild
  • Paul Young
  • D. J. Beerling
  • C. N. Hewitt
  • J. A. Pyle
Journal publication date06/2011
JournalProcedia Environmental Sciences
Volume6
Number of pages7
Pages199-205
Original languageEnglish

Abstract

The eruption of Mt. Pinatubo in June 1991 was the largest in the twentieth century. One of its effects was to produce cooler and drier conditions in the years following the eruption. We present the results of an integrated model study of the effect of these climatic changes on the emissions of isoprene from the biosphere. Our emissions model simulations showed that global isoprene emissions were reduced by 9% from 1990 to 1992. When incorporated into our model of global atmospheric chemistry this reduction of isoprene emissions led to an increase in the tropospheric OH burden of 2%. This caused an increase in the removal of methane via oxidation by OH of up to 5 Tg per year. This could have contributed to the observed changes in methane growth rate at this time.