Home > Research > Publications & Outputs > Electronic structure of bulk AnO2 (An = U, Np, ...

Associated organisational unit

Electronic data

  • 1-s2.0-S0022311516308649-main

    Rights statement: This is the author’s version of a work that was accepted for publication in Journal of Nuclear Materials. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Nuclear Materials, 482, 2016 DOI: 10.1016/j.jnucmat.2016.10.005

    Accepted author manuscript, 1.23 MB, PDF document

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

Electronic structure of bulk AnO2 (An = U, Np, Pu) and water adsorption on the (111) and (110) surfaces of UO2 and PuO2 from hybrid density functional theory within the periodic electrostatic embedded cluster method

Research output: Contribution to journalJournal article

Published
Close
<mark>Journal publication date</mark>15/12/2016
<mark>Journal</mark>Journal of Nuclear Materials
Volume482
Number of pages11
Pages (from-to)124-134
Publication statusPublished
Early online date4/10/16
Original languageEnglish

Abstract

Generalised gradient approximation (PBE) and hybrid (PBE0) density functional theory (DFT) within the periodic electrostatic embedded cluster method have been used to study AnO2 bulk and surfaces (An = U, Np, Pu). The electronic structure has been investigated by examining the projected density of states (PDOS). While PBE incorrectly predicts these systems to be metallic, PBE0 finds them to be insulators, with the composition of the valence and conduction levels agreeing well with experiment. Molecular and dissociative water adsorption on the (111) and (110) surfaces of UO2 and PuO2 has been investigated, with that on the (110) surface being stronger than on the (111). Similar energies are found for molecular and dissociative adsorption on the (111) surfaces, while on the (110) there is a clear preference for dissociative adsorption. Adsorption energies and geometries on the (111) surface of UO2 are in good agreement with recent periodic DFT studies using the GGA+U approach, and our data for dissociative adsorption on the (110) surface of PuO2 match experiment rather well, especially when dispersion corrections are included.

Bibliographic note

This is the author’s version of a work that was accepted for publication in Journal of Nuclear Materials. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Nuclear Materials, 482, 2016 DOI: 10.1016/j.jnucmat.2016.10.005