Home > Research > Publications & Outputs > Enhanced Recovery of Nonextractable Benzo[a]pyr...

Electronic data

  • 1. Anthony_Manuscript_clean copy

    Rights statement: This document is the Accepted Manuscript version of a Published Work that appeared in final form in Analytical Chemistry, copyright ©2018 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.analchem.8b04440

    Accepted author manuscript, 816 KB, PDF document

    Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License

Links

Text available via DOI:

View graph of relations

Enhanced Recovery of Nonextractable Benzo[a]pyrene Residues in Contrasting Soils Using Exhaustive Methanolic and Nonmethanolic Alkaline Treatments

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
<mark>Journal publication date</mark>6/11/2018
<mark>Journal</mark>Analytical Chemistry
Issue number21
Volume90
Number of pages8
Pages (from-to)13104-13111
Publication StatusPublished
Early online date29/09/18
<mark>Original language</mark>English

Abstract

The fate, impacts, and significance of polycyclic aromatic hydrocarbon (PAH) nonextractable residues (NERs) in soils remain largely unexplored in risk-based contaminated land management. In this study, seven different methanolic and nonmethanolic alkaline treatments, and the conventional methanolic saponification, were used to extract benzo[ a]pyrene (B[ a]P) NERs that had been aged for 180 d from four contrasting soils. Up to 16% and 55% of the amount of B[ a]P spiked (50 mg/kg) into soils was nonextractable after 2 d and 180 of aging, respectively, indicating rapid and progressive B[ a]P sequestration in soils over time. The recovery of B[ a]P from soils after 180 d of aging was increased by up to 48% by the seven different alkaline extractions, although the extraction efficiencies of the different alkaline treatments did not differ significantly ( p > 0.05). Approximately 40% of B[ a]P NERs in the sandy-clay-loam organic matter-rich soil was recovered by the exhaustive alkaline extractions after 180 d of aging, compared to only 10% using conventional methanolic saponification. However, the amounts of B[ a]P NERs recovered depend on soil properties and the amounts of NERs in soils. A significant correlation ( R2 = 0.69, p < 0.001) was also observed between the amounts of B[ a]P recovered by each of the seven alkaline extractions in the contrasting soils and corresponding NERs at 180 d of aging, indicating a potential association warranting further investigations. Extraction techniques that estimate the amounts of PAH NERs recoverable in soil can help give a better understanding of the fate of NERs in soil.

Bibliographic note

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Analytical Chemistry, copyright ©2018 American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.analchem.8b04440