We have over 12,000 students, from over 100 countries, within one of the safest campuses in the UK


93% of Lancaster students go into work or further study within six months of graduating

Home > Research > Publications & Outputs > Evaporation of Sessile Drops: Application of th...
View graph of relations

« Back

Evaporation of Sessile Drops: Application of the Quartz Crystal Microbalance.

Research output: Contribution to journalJournal article


Associated organisational unit

Journal publication date2000
Number of pages10
Original languageEnglish


The application of the quartz crystal microbalance (QCM) to the study of the evaporation of sessile droplets is reported. The evaporation of a homologous series of light alcohols, from the surface of an oscillating quartz crystal, has been investigated. The droplet evaporation process is observed to cause reproducible, characteristic changes in crystal oscillation frequency that are indicative of the complex thermophysical phenomena occurring at both the liquid−vapor and crystal−fluid interfaces. The influence of surface morphology on the frequency responses during the evaporation process is understood in the framework of the perturbation theory of surfaces of slight roughness and random corrugation in the low viscosity limit. The experimental data are understood in terms of the radial sensitivity of the QCM S(r,) via the deduction of the areal retreat speed vr. The extreme modes of droplet evaporation, associated with constant contact area and constant contact angle, are identifiable from the observed frequency responses. The trend of characteristic frequency responses observed is consistent with surface-tension driven convection effects, which are often responsible for fluid−vapor interface phenomena.