Home > Research > Publications & Outputs > Evolution of Star-forming Galaxies from z=0.7 t...

Electronic data

  • 1810.05318

    Rights statement: This is an author-created, un-copyedited version of an article accepted for publication/published in The Astrophysical Journal. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at doi:10.3847/1538-4357/aaf9ad

    Accepted author manuscript, 1.87 MB, PDF document

    Available under license: CC BY-NC: Creative Commons Attribution-NonCommercial 4.0 International License

Links

Text available via DOI:

View graph of relations

Evolution of Star-forming Galaxies from z=0.7 to 1.2 with eBOSS Emission-line Galaxies

Research output: Contribution to Journal/MagazineJournal articlepeer-review

Published
  • Hong Guo
  • Xiaohu Yang
  • Anand Raichoor
  • Zheng Zheng
  • Johan Comparat
  • V. Gonzalez-Perez
  • Jean-Paul Kneib
  • Donald P. Schneider
  • Dmitry Bizyaev
  • Daniel Oravetz
  • Audrey Oravetz
  • Kaike Pan
Close
Article number147
<mark>Journal publication date</mark>29/01/2019
<mark>Journal</mark>The Astrophysical Journal
Issue number2
Volume871
Number of pages17
Publication StatusPublished
<mark>Original language</mark>English

Abstract

We study the evolution of star-forming galaxies with 10 10 M ⊙ < M ∗ < 10 11.6 M ⊙ over the redshift range of 0.7 < z < 1.2 using the emission-line galaxies (ELGs) in the extended Baryon Oscillation Spectroscopic Survey (eBOSS). By applying the incomplete conditional stellar mass function (SMF) model proposed in Guo et al., we simultaneously constrain the sample completeness, the stellariVhalo mass relation (SHMR), and the quenched galaxy fraction. We obtain the intrinsic SMFs for star-forming galaxies in the redshift bins of 0.7 < z < 0.8, 0.8 < z < 0.9, 0.9 < z < 1.0, and 1.0 < z < 1.2, as well as the SMF for all galaxies in the redshift bin of 0.7 < z < 0.8. We find that the eBOSS ELG sample only selects about 1%-10% of the star-forming galaxy population at the different redshifts, with the lower redshift samples more complete. There is only weak evolution in the SHMR of the ELGs from z = 1.2 to z = 0.7, as well as the intrinsic galaxy SMFs. Our best-fitting models show that the central ELGs at these redshifts live in halos of mass M ∼ 10 12 M ⊙ , while the satellite ELGs occupy slightly more massive halos of M ∼ 10 12.6 M ⊙ . The average satellite fraction of the observed ELGs varies from 13% to 17%, with the galaxy bias increasing from 1.1 to 1.4 from z = 0.7 to 1.2.

Bibliographic note

This is an author-created, un-copyedited version of an article accepted for publication/published in The Astrophysical Journal. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at doi:10.3847/1538-4357/aaf9ad