Home > Research > Publications & Outputs > Experimental investigation of energy storage pr...

Electronic data

  • Accepted_manuscript

    Rights statement: This is the author’s version of a work that was accepted for publication in Journal of Energy Storage. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Energy Storage, 27, 2020 DOI: 10.1016/j.est.2019.101115

    Accepted author manuscript, 3.44 MB, PDF document

    Embargo ends: 11/12/20

    Available under license: CC BY-NC-ND: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Links

Text available via DOI:

View graph of relations

Experimental investigation of energy storage properties and thermal conductivity of a novel organic phase change material/MXene as A new class of nanocomposites

Research output: Contribution to journalJournal article

Published
Close
Article number101115
<mark>Journal publication date</mark>29/02/2020
<mark>Journal</mark>Journal of Energy Storage
Volume27
Number of pages12
Publication StatusPublished
Early online date11/12/19
<mark>Original language</mark>English

Abstract

Energy storage is a global critical issue and important area of research as most of the renewable sources of energy are intermittent. In this research work, recently emerged inorganic nanomaterial (MXene) is used for the first time with paraffin wax as a phase change material (PCM) to improve its thermo-physical properties. This paper focuses on preparation, characterization, thermal properties and thermal stability of new class of nanocomposites induced with MXene nanoparticles in three different concentrations. Acquired absorbance (UV-Vis) for nanocomposite with loading concentration of 0.3 wt.% of MXene achieved ~39% enhancement in comparison with the pure paraffin wax. Thermal conductivity measurement for nanocomposites in a solid state is performed using a KD2 PRO decagon. The specific heat capacity (cp) of PCM based MXene is improved by introducing MXene. The improvement of cp is found to be 43% with 0.3 wt.% of MXene loaded in PCM. The highest thermal conductivity increment is found to be 16% at 0.3 wt.% concentration of MXene in PCM. Decomposition temperature of this new class of nanocomposite with 0.3 wt.% mass fraction is increased by ~6%. This improvement is beneficial in thermal energy storage and heat transfer applications.

Bibliographic note

This is the author’s version of a work that was accepted for publication in Journal of Energy Storage. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Energy Storage, 27, 2020 DOI: 10.1016/j.est.2019.101115