Home > Research > Publications & Outputs > Export of Abscisic Acid, 1-Aminocyclopropane-1-...
View graph of relations

Export of Abscisic Acid, 1-Aminocyclopropane-1-Carboxylic Acid, Phosphate, and Nitrate from Roots to Shoots of Flooded Tomato Plants (Accounting for Effects of Xylem Sap Flow Rate on Concentration and Delivery).

Research output: Contribution to Journal/MagazineJournal article

Published

Standard

Export of Abscisic Acid, 1-Aminocyclopropane-1-Carboxylic Acid, Phosphate, and Nitrate from Roots to Shoots of Flooded Tomato Plants (Accounting for Effects of Xylem Sap Flow Rate on Concentration and Delivery). / Else, M. A.; Hall, K. C.; Arnold, G. M. et al.
In: Plant Physiology, Vol. 107, No. 2, 02.1995, p. 377-384.

Research output: Contribution to Journal/MagazineJournal article

Harvard

APA

Vancouver

Author

Bibtex

@article{270a672f161f4dfab8ba2d26040847de,
title = "Export of Abscisic Acid, 1-Aminocyclopropane-1-Carboxylic Acid, Phosphate, and Nitrate from Roots to Shoots of Flooded Tomato Plants (Accounting for Effects of Xylem Sap Flow Rate on Concentration and Delivery).",
abstract = "We determined whether root stress alters the output of physiologically active messages passing from roots to shoots in the transpiration stream. Concentrations were not good measures of output. This was because changes in volume flow of xylem sap caused either by sampling procedures or by effects of root stress on rates of whole-plant transpiration modified concentrations simply by dilution. Thus, delivery rate (concentration x sap flow rate) was preferred to concentration as a measure of solute output from roots. To demonstrate these points, 1-aminocyclopropane-1-carboxylic acid (ACC), abscisic acid, phosphate, nitrate, and pH were measured in xylem sap of flooded and well-drained tomato (Lycopersicon esculentum Mill., cv Ailsa Craig) plants expressed at various rates from pressurized detopped roots. Concentrations decreased as sap flow rates were increased. However, dilution of solutes was often less than proportional to flow, especially in flooded plants. Thus, sap flowing through detopped roots at whole-plant transpiration rates was used to estimate solute delivery rates in intact plants. On this basis, delivery of ACC from roots to shoots was 3.1-fold greater in plants flooded for 24 h than in well-drained plants, and delivery of phosphate was 2.3-fold greater. Delivery rates of abscisic acid and nitrate in flooded plants were only 11 and 7%, respectively, of those in well-drained plants.",
author = "Else, {M. A.} and Hall, {K. C.} and Arnold, {G. M.} and Davies, {William J.} and Jackson, {M. B.}",
year = "1995",
month = feb,
doi = "10.1104/pp.107.2.377",
language = "English",
volume = "107",
pages = "377--384",
journal = "Plant Physiology",
issn = "1532-2548",
publisher = "American Society of Plant Biologists",
number = "2",

}

RIS

TY - JOUR

T1 - Export of Abscisic Acid, 1-Aminocyclopropane-1-Carboxylic Acid, Phosphate, and Nitrate from Roots to Shoots of Flooded Tomato Plants (Accounting for Effects of Xylem Sap Flow Rate on Concentration and Delivery).

AU - Else, M. A.

AU - Hall, K. C.

AU - Arnold, G. M.

AU - Davies, William J.

AU - Jackson, M. B.

PY - 1995/2

Y1 - 1995/2

N2 - We determined whether root stress alters the output of physiologically active messages passing from roots to shoots in the transpiration stream. Concentrations were not good measures of output. This was because changes in volume flow of xylem sap caused either by sampling procedures or by effects of root stress on rates of whole-plant transpiration modified concentrations simply by dilution. Thus, delivery rate (concentration x sap flow rate) was preferred to concentration as a measure of solute output from roots. To demonstrate these points, 1-aminocyclopropane-1-carboxylic acid (ACC), abscisic acid, phosphate, nitrate, and pH were measured in xylem sap of flooded and well-drained tomato (Lycopersicon esculentum Mill., cv Ailsa Craig) plants expressed at various rates from pressurized detopped roots. Concentrations decreased as sap flow rates were increased. However, dilution of solutes was often less than proportional to flow, especially in flooded plants. Thus, sap flowing through detopped roots at whole-plant transpiration rates was used to estimate solute delivery rates in intact plants. On this basis, delivery of ACC from roots to shoots was 3.1-fold greater in plants flooded for 24 h than in well-drained plants, and delivery of phosphate was 2.3-fold greater. Delivery rates of abscisic acid and nitrate in flooded plants were only 11 and 7%, respectively, of those in well-drained plants.

AB - We determined whether root stress alters the output of physiologically active messages passing from roots to shoots in the transpiration stream. Concentrations were not good measures of output. This was because changes in volume flow of xylem sap caused either by sampling procedures or by effects of root stress on rates of whole-plant transpiration modified concentrations simply by dilution. Thus, delivery rate (concentration x sap flow rate) was preferred to concentration as a measure of solute output from roots. To demonstrate these points, 1-aminocyclopropane-1-carboxylic acid (ACC), abscisic acid, phosphate, nitrate, and pH were measured in xylem sap of flooded and well-drained tomato (Lycopersicon esculentum Mill., cv Ailsa Craig) plants expressed at various rates from pressurized detopped roots. Concentrations decreased as sap flow rates were increased. However, dilution of solutes was often less than proportional to flow, especially in flooded plants. Thus, sap flowing through detopped roots at whole-plant transpiration rates was used to estimate solute delivery rates in intact plants. On this basis, delivery of ACC from roots to shoots was 3.1-fold greater in plants flooded for 24 h than in well-drained plants, and delivery of phosphate was 2.3-fold greater. Delivery rates of abscisic acid and nitrate in flooded plants were only 11 and 7%, respectively, of those in well-drained plants.

U2 - 10.1104/pp.107.2.377

DO - 10.1104/pp.107.2.377

M3 - Journal article

VL - 107

SP - 377

EP - 384

JO - Plant Physiology

JF - Plant Physiology

SN - 1532-2548

IS - 2

ER -